scholarly journals ChiIV3 Acts as a Novel Target of WRKY40 to Mediate Pepper Immunity Against Ralstonia solanacearum Infection

2019 ◽  
Vol 32 (9) ◽  
pp. 1121-1133 ◽  
Author(s):  
Zhiqin Liu ◽  
Lanping Shi ◽  
Yahong Weng ◽  
Huasong Zou ◽  
Xia Li ◽  
...  

ChiIV3, a chitinase of pepper (Capsicum annuum), stimulates cell death in pepper plants. However, there are only scarce reports on its role in resistance against bacterial wilt disease such as that caused by Ralstonia solanacearum and their transcriptional regulation. In this study, the silencing of ChiIV3 in pepper plants significantly reduced the resistance to R. solanacearum. The transcript of ChiIV3 was induced by R. solanacearum inoculation (RSI) as well as exogenous application of methyl jasmonate and abscisic acid. The bioinformatics analysis revealed that the ChiIV3 promoter consists of multiple stress-related cis elements, including six W-boxes and one MYB1AT. With the 5′ deletion assay in the ChiIV3 promoter, the W4-box located from −640 to −635 bp was identified as the cis element that is required for the response to RSI. In addition, the W4-box element was shown to be essential for the binding of the ChiIV3 promoter by the WRKY40 transcription factor, which is known to positively regulate the defense response to R. solanacearum. Site-directed mutagenesis in the W4-box sequence impaired the binding of WRKY40 to the ChiIV3 promoter. Subsequently, the transcription of ChiIV3 decreased in WRKY40-silenced pepper plants. These results demonstrated that the expression of the defense gene ChiIV3 is controlled through multiple modes of regulation, and WRKY40 directly binds to the W4-box element of the ChiIV3 promoter region for its transcriptional regulation.

2020 ◽  
Vol 14 (1) ◽  
pp. 8-20
Author(s):  
Fery Abdul Choliq ◽  
Mintarto Martosudiro ◽  
Istiqomah Istiqomah ◽  
Muhammad Fanhash Nijami

Tomato is the top priority in the development of horticultural crops. The obstacle which mostly encountered is Ralstonia solanacearum pathogen attack. Bacteriophage can cause bacterial lysis after they they develop themselves inside the bacteria. The specific of the bacteriophage can provide result quickly, accurately, and efficiently so that it can be used as an alternative to control bacterial wilt disease R. solanacearum environmentally friendly. This study aims to find out the effectiveness of bacteriophage to control the bacterial wilt disease R. solanacearum. The testing method are plaque assay, bacteriophage infections test in various dilutions, bacteriophage infection test in a liquid medium, and transmission electron microscopy test. In the greenhouse scale testing using a Completely Randomized Design (CRD) with 6 treatments and 4 replications. Quantitative data were analyzed using analysis of variance 5% error level and followed by least significant different  test level of 5%. The results showed that bacteriophages can infect R. solanacearum. Bacteriophage can infect bacteria R. solanacearum indicated by the appearance of plaques in NA media, the declining value of absorbance spectophotometer, and can lyse bacterial cells from dilutions 10-1 to 10-9. The morphology of bacteriophages that infect R. solanacearum have hexagonal head structure and it have which is with a size of 200 nm. In the greenhouse scale showed that the symptoms of R. solanacearum appear at 29 days after inoculation. Application of bacteriophages can control R. solanacearum with lower percentage than the control treatment.


2019 ◽  
Vol 2 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Rachmad Saputra ◽  
Triwidodo Arwiyanto ◽  
Arif Wibowo

Streptomyces sp. bacteria have the potential to produce antibiotic compounds, which are one of the mechanisms that are widely used in biological control. However, in general, biological control mechanisms also occur through competition, cell wall degradation and induced resistance. This study was aimed to determine the physiological, biochemical and molecular characteristics of two isolates of Streptomyces sp. (S-4 and S16 isolates) isolated from the tomatoes roots, and to find out their ability to control Ralstonia solanacearum, which causes bacterial wilt disease on a wide range of hosts. The results showed both Streptomyces sp. isolates had several different physiological and biochemical characteristics and had a different ability to inhibit R. solanacearum in vitro. Streptomyces sp. S-16 isolate had a high similarity with Streptomyces diastaticus subsp. ardesiacus strain NRRL B-1773T based on the molecular identification results. Further research needs to be done to see the potential inhibition of the two Streptomyces isolates in inhibiting the development of bacterial wilt disease in tomato plants caused by R. solanacearum.


Plant Science ◽  
2019 ◽  
Vol 280 ◽  
pp. 197-205 ◽  
Author(s):  
Tâmara P. Morais ◽  
Paulo A. Zaini ◽  
Sandeep Chakraborty ◽  
Hossein Gouran ◽  
Camila P. Carvalho ◽  
...  

2010 ◽  
Vol 23 (8) ◽  
pp. 1042-1052 ◽  
Author(s):  
Jennifer Colburn-Clifford ◽  
Caitilyn Allen

Ralstonia solanacearum race 3 biovar 2 (R3bv2) is an economically important soilborne plant pathogen that causes bacterial wilt disease by infecting host plant roots and colonizing the xylem vessels. Little is known about R3bv2 behavior in the host rhizosphere and early in bacterial wilt pathogenesis. To explore this part of the disease cycle, we used a novel taxis-based promoter-trapping strategy to identify pathogen genes induced in the plant rhizosphere. This screen identified several rex (root exudate expressed) genes whose promoters were upregulated in the presence of tomato root exudates. One rex gene encodes an assembly protein for a high affinity cbb3-type cytochrome c oxidase (cbb3-cco) that enables respiration in low-oxygen conditions in other bacteria. R3bv2 cbb3-cco gene expression increased under low-oxygen conditions, and a cbb3-cco mutant strain grew more slowly in a microaerobic environment (0.5% O2). Although the cco mutant could still wilt tomato plants, symptom onset was significantly delayed relative to the wild-type parent strain. Further, the cco mutant did not colonize host stems or adhere to roots as effectively as wild type. These results suggest that R3bv2 encounters low-oxygen environments during its interactions with host plants and that the pathogen depends on this oxidase to help it succeed in planta.


2013 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Jonathan M. Jacobs ◽  
Caitilyn Allen

The bacterial wilt pathogen Ralstonia solanacearum causes major agricultural losses on many crop hosts worldwide. Resistance breeding is the best way to control bacterial wilt disease, but the biological basis for bacterial wilt resistance is unknown. We found that R. solanacearum uses an AvrE-family, Type III-secreted effector called PopS to overcome plant defenses and cause disease on tomato. Orthologs of PopS are widely conserved across distinct classes of plant pathogenic bacteria and could provide novel, durable targets for resistance. Accepted for publication 25 September 2013. Published 25 November 2013.


1970 ◽  
pp. 42-47 ◽  
Author(s):  
Shambhu P Dhital ◽  
Nanda Thaveechai ◽  
Sundar K Shrestha

Characterization of strains of Ralstonia solanacearum, the causal agent of potato bacterial wilt disease from Nepal and Thailand was performed based on pathogenicity, biochemical/physiological and serological tests. Fifteen R. solanacearum strains isolated from wilt infected potato plants and tubers grown in Nepal were characterized as race 3, biovar II based on the pathogenicity on different host plants, hypersensitive reaction on tobacco leaf and utilization of some sugars. Results of pathogenicity test show that all strains from Nepal had limited host range. Degree of virulence of all strains varied from high to medium in potato and tomato and medium to low in eggplant. They did not cause wilting in tobacco, pepper and peanut plants. Six strains from Thailand were characterized as biovar II and III. Additionally, comparisons on the physiological, biological and serological characters of seven strains from Nepal and six from Thailand revealed similar characters. Race 3 and biovar II of the pathogen was widely spread over potato growing areas of mid and high hills of Nepal. Both biovars II and III were prevalent in the potato growing areas of Thailand but biovar III was the most dominating one.Key words: Bacterial wilt; Potato; Pseudomonas solanacearum; Ralstonia solanacearumDOI: http://dx.doi.org/10.3126/narj.v4i0.4868Nepal Agriculture Research Journal Vol. 4&5, 2001/2002Page: 42-47Uploaded date: 9 June, 2011


Sign in / Sign up

Export Citation Format

Share Document