scholarly journals Quorum-Sensing System Affects Gall Development Incited by Pantoea agglomerans pv. gypsophilae

2008 ◽  
Vol 21 (8) ◽  
pp. 1094-1105 ◽  
Author(s):  
Laura Chalupowicz ◽  
Shulamit Manulis-Sasson ◽  
Maxim Itkin ◽  
Ayelet Sacher ◽  
Guido Sessa ◽  
...  

The quorum-sensing (QS) regulatory system of the gall-forming Pantoea agglomerans pv. gypsophilae was identified. Mass spectral analysis, together with signal-specific biosensors, demonstrated that P. agglomerans pv. gypsophilae produced N-butanoyl-l-homoserine lactone (C4-HSL) as a major and N-hexanoyl-l-homoserine lactone (C6-HSL) as a minor QS signal. Homologs of luxI and luxR regulatory genes, pagI and pagR, were characterized in strain P. agglomerans pv. gypsophilae Pag824-1 and shown to be convergently transcribed and separated by 14 bp. The deduced PagI (23.8 kDa) and PagR (26.9 kDa) show high similarity with SmaI (41% identity) and SmaR (43% identity), respectively, of Serratia sp. American Type Culture Collection 39006. PagR possesses characteristic autoinducer binding and a helix-turn-helix DNA-binding domain. Gall formation by P. agglomerans pv. gypsophilae depends on a plasmid-borne hrp/hrc gene cluster, type III effectors, and phytohormones. Disruption of pagI, pagR, or both genes simultaneously in Pag824-1 reduced gall size in gypsophila cuttings by 50 to 55% when plants were inoculated with 106 CFU/ml. Higher reductions in gall size (70 to 90%) were achieved by overexpression of pagI or addition of exogenous C4-HSL. Expression of the hrp/hrc regulatory gene hrpL and the type III effector pthG in the pagI mutant, as measured with quantitative reverse-transcriptase polymerase chain reaction, was reduced by 5.8 and 6.6, respectively, compared with the wild type, suggesting an effect of the QS system on the Hrp regulon.

2005 ◽  
Vol 18 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Thomas F. C. Chin-A-Woeng ◽  
Daan van den Broek ◽  
Ben J. J. Lugtenberg ◽  
Guido V. Bloemberg

The rhizobacterium Pseudomonas chlororaphis PCL1391 produces the antifungal metabolite phenazine-1-carboxamide (PCN), which is a crucial trait in its competition with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici in the rhizosphere. The expression of the PCN biosynthetic gene cluster in PCL1391 is population density-dependent and is regulated by the quorum-sensing genes phzI and phzR via synthesis of the autoinducer Nhexanoyl-L-homoserine lactone (C6-HSL). Here, we describe the identification of an additional regulatory gene of PCN biosynthesis in PCL1391. A mutation in the psrA gene (Pseudomonas sigma regulator), the gene product of which is a member of the TetR/AcrR family of transcriptional regulators, resulted in increased production of autoinducer molecules and PCN. Expression studies showed that inactivation of psrA resulted in increased expression of the phzI and phzR genes and the phz biosynthetic operon and that introduction of functional copies of psrA represses the expression of these genes, resulting in reduced production of autoinducer signal and PCN. Surprisingly, inactivation of psrA in the phzI or phzR quorum-sensing mutants, which do not produce detectable amounts of PCN and autoinducers by themselves, restored PCN biosynthesis. This phenomenon was accompanied by the appearance of compounds with autoinducer activities migrating at the positions of C4-HSL and C6-HSL on C18 reverse phase-thin-layer chromatography. These observations indicate that PsrA also represses at least one silent, yet unidentified, quorum-sensing system or autoinducer biosynthetic pathway in PCL1391. The expression of psrA declines at the onset of the stationary phase at the same moment at which quorum-sensing (-regulated) genes are activated. In addition, expression studies in a psrA- and a multicopy psrA background showed that psrA is autoregulated. Multiple copies of psrA repress its own expression. Mutation of gacS, encoding the sensor kinase member of a two-component global regulatory system significantly reduced production of autoinducers and PCN. We show a novel link between global regulation and quorum sensing via the PsrA regulator.


2004 ◽  
Vol 72 (11) ◽  
pp. 6589-6596 ◽  
Author(s):  
Ricky L. Ulrich ◽  
David DeShazer ◽  
Harry B. Hines ◽  
Jeffrey A. Jeddeloh

ABSTRACT Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 104 CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo.


2007 ◽  
Vol 73 (20) ◽  
pp. 6339-6344 ◽  
Author(s):  
Tomohiro Morohoshi ◽  
Toshitaka Shiono ◽  
Kiyomi Takidouchi ◽  
Masashi Kato ◽  
Norihiro Kato ◽  
...  

ABSTRACT Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.


Marine Drugs ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 20 ◽  
Author(s):  
Lisa Ziesche ◽  
Laura Wolter ◽  
Hui Wang ◽  
Thorsten Brinkhoff ◽  
Marion Pohlner ◽  
...  

N-acylhomoserine lactones (AHLs), bacterial signaling compounds involved in quorum-sensing, are a structurally diverse group of compounds. We describe here the identification, synthesis, occurrence and biological activity of a new AHL, N-((2E,5Z)-2,5-dodecadienoyl)homoserine lactone (11) and its isomer N-((3E,5Z)-3,5-dodecadienoyl)homoserine lactone (13), occurring in several Roseobacter group bacteria (Rhodobacteraceae). The analysis of 26 strains revealed the presence of 11 and 13 in six of them originating from the surface of the macroalgae Fucus spiralis or sediments from the North Sea. In addition, 18 other AHLs were detected in 12 strains. Compound identification was performed by GC/MS. Mass spectral analysis revealed a diunsaturated C12 homoserine lactone as structural element of the new AHL. Synthesis of three likely candidate compounds, 11, 13 and N-((2E,4E)-2,4-dodecadienoyl)homoserine lactone (5), revealed the former to be the natural AHLs. Bioactivity test with quorum-sensing reporter strains showed high activity of all three compounds. Therefore, the configuration and stereochemistry of the double bonds in the acyl chain seemed to be unimportant for the activity, although the chains have largely different shapes, solely the chain length determining activity. In combination with previous results with other Roseobacter group bacteria, we could show that there is wide variance between AHL composition within the strains. Furthermore, no association of certain AHLs with different habitats like macroalgal surfaces or sediment could be detected.


2019 ◽  
Vol 20 (11) ◽  
pp. 1582-1587 ◽  
Author(s):  
Gal Nissan ◽  
Laura Chalupowicz ◽  
Guido Sessa ◽  
Shulamit Manulis‐Sasson ◽  
Isaac Barash

2002 ◽  
Vol 184 (4) ◽  
pp. 1121-1131 ◽  
Author(s):  
Philippe Oger ◽  
Stephen K. Farrand

ABSTRACT Conjugal transfer of Ti plasmids from Agrobacterium spp. is controlled by a hierarchical regulatory system designed to sense two environmental cues. One signal, a subset of the opines produced by crown gall tumors initiated on plants by the pathogen, serves to induce production of the second, an acyl-homoserine lactone quorum-sensing signal, the quormone, produced by the bacterium itself. This second signal activates TraR, and this transcriptional activator induces expression of the tra regulon. Opines control transfer because the traR gene is a member of an operon the expression of which is regulated by the conjugal opine. Among the Ti plasmid systems studied to date, only one of the two or more opine families produced by the associated tumor induces transfer. However, two chemically dissimilar opines, nopaline and agrocinopines A and B, induce transfer of the opine catabolic plasmid pAtK84b found in the nonpathogenic Agrobacterium radiobacter isolate K84. In this study we showed that this plasmid contains two copies of traR, and each is associated with a different opine-regulated operon. One copy, traR noc, is the last gene of the nox operon and was induced by nopaline but not by agrocinopines A and B. Mutating traR noc abolished induction of transfer by nopaline but not by the agrocinopines. A mutation in ocd, an upstream gene of the nox operon, abolished utilization of nopaline and also induction of transfer by this opine. The second copy, traR acc, is located in an operon of four genes and was induced by agrocinopines A and B but not by nopaline. Genetic analysis indicated that this gene is required for induction of transfer by agrocinopines A and B but not by nopaline. pAtK84b with mutations in both traR genes was not induced for transfer by either opine. However, expression of a traR gene in trans to this plasmid resulted in opine-independent transfer. The association of traR noc with nox is unique, but the operon containing traR acc is related to the arc operons of pTiC58 and pTiChry5, two Ti plasmids inducible for transfer by agrocinopines A-B and C-D, respectively. We conclude that pAtK84b codes for two independently functioning copies of traR, each regulated by a different opine, thus accounting for the activation of the transfer system of this plasmid by the two opine types.


2002 ◽  
Vol 184 (15) ◽  
pp. 4089-4095 ◽  
Author(s):  
Asita Chatterjee ◽  
Yaya Cui ◽  
Arun K. Chatterjee

ABSTRACT RsmA (for regulator of secondary metabolism), RsmC, and rsmB RNA, the components of a posttranscriptional regulatory system, control extracellular protein production and pathogenicity in Erwinia carotovora subsp. carotovora. RsmA, an RNA binding protein, acts as a negative regulator by promoting message decay. rsmB RNA, on the other hand, acts as a positive regulator by neutralizing the effect of RsmA. RsmC modulates the levels of RsmA and rsmB RNA by positively regulating rsmA and negatively controlling rsmB. The level of rsmB RNA is substantially higher in RsmA+ bacteria than in RsmA− mutants. We show that rsmB RNA is more stable in the presence of RsmA than in its absence. RsmA does not stimulate the expression of an rsmB-lacZ transcriptional fusion; in fact, the β-galactosidase level is somewhat higher in RsmA− bacteria than in RsmA+ bacteria. We also investigated the basis for increased levels of rsmA and rsmB RNAs in the absence of the quorum-sensing signal, N-[3-oxohexanoyl]-l-homoserine lactone (OHL). The absence of OHL activates transcription of rsmA but not of rsmB. Instead, increased stability of rsmB RNA in the presence of RsmA accounts for the elevated levels of the rsmB RNA in OHL− bacteria. Mutant studies disclosed that while RsmA, OHL, and RsmC control the levels of rsmB RNA, high levels of rsmB RNA occur in the absence of RsmC or OHL only in RsmA+ bacteria, indicating a critical role for RsmA in modulating the levels of rsmB RNA. The findings reported here firmly establish that the quorum-sensing signal is channeled in E. carotovora subsp. carotovora via the rsmA-rsmB posttranscriptional regulatory system.


2004 ◽  
Vol 70 (9) ◽  
pp. 5493-5502 ◽  
Author(s):  
Iris Bertani ◽  
Vittorio Venturi

ABSTRACT Quorum sensing is a cell population-density dependent regulatory system which in gram-negative bacteria often involves the production and detection of N-acyl homoserine lactones (AHLs). Some Pseudomonas putida strains have been reported to produce AHLs, and one quorum-sensing locus has been identified. However, it appears that the majority of strains do not produce AHLs. In this study we report the identification and regulation of the AHL-dependent system of rhizosphere P. putida WCS358. This system is identical to the recently identified system of P. putida strain IsoF and very similar to the las system of Pseudomonas aeruginosa. It is composed of three genes, the luxI family member ppuI, the putative repressor rsaL, and the luxR family member ppuR. A genomic ppuR::Tn5 mutant of strain WCS358 was identified by its inability to produce AHLs when it was cross-streaked in close proximity to an AHL biosensor, whereas an rsaL::Tn5 genomic mutant was identified by its ability to overproduce AHL molecules. Using transcriptional promoter fusions, we studied expression profiles of the rsaL, ppuI, and ppuR promoters in various genetic backgrounds. At the onset of the stationary phase, the autoinducer synthase ppuI gene expression is under positive regulation by PpuR-AHL and under negative regulation by RsaL, indicating that the molecules could be in competition for binding at the ppuI promoter. In genomic rsaL::Tn5 mutants ppuI expression and production of AHL levels increased dramatically; however, both processes were still under growth phase regulation, indicating that RsaL is not involved in repressing AHL production at low cell densities. The roles of the global response regulator GacA and the stationary-phase sigma factor RpoS in the regulation of the AHL system at the onset of the stationary phase were also investigated. The P. putida WCS358 gacA gene was cloned and inactivated in the genome. It was determined that the three global regulatory systems are closely linked, with quorum sensing and RpoS regulating each other and GacA positively regulating ppuI expression. Studies of the regulation of AHL quorum-sensing systems have lagged behind other studies and are important for understanding how these systems are integrated into the overall growth phase and metabolic status of the cells.


Microbiology ◽  
2011 ◽  
Vol 157 (5) ◽  
pp. 1500-1508 ◽  
Author(s):  
Dan M. Weinthal ◽  
Isaac Barash ◽  
Tzvi Tzfira ◽  
Victor Gaba ◽  
Doron Teper ◽  
...  

HsvG and HsvB, two paralogous type III effectors of the gall-forming bacteria Pantoea agglomerans pv. gypsophilae and P. agglomerans pv. betae, determine host specificity on gypsophila and beet, respectively. They were previously shown to be DNA-binding proteins imported into host and non-host nuclei and might act as transcriptional activators. Sequence analysis of these effectors did not detect canonical nuclear localization signals (NLSs), but two basic amino acid clusters designated putative NLS1 and NLS2 were detected in their N-terminal and C-terminal regions, respectively. pNIA assay for nuclear import in yeast and bombardment of melon leaves with each of the NLSs fused to a 2xYFP reporter indicated that putative NLS1 and NLS2 were functional in transport of HsvG into the nucleus. A yeast two-hybrid assay showed that HsvB, HsvG, putative NLS1, putative NLS2, HsvG converted into HsvB, or HsvB converted into HsvG by exchanging the repeat domain, all interacted with AtKAP-α and importin-α3 of Arabidopsis thaliana. Deletion analysis of the NLS domains in HsvG suggested that putative NLS1 or NLS2 were required for pathogenicity on gypsophila cuttings and presumably for import of HsvG into the nucleus. This study demonstrates the presence of two functional NLSs in the type III effectors HsvG and HsvB.


2009 ◽  
Vol 22 (7) ◽  
pp. 849-856 ◽  
Author(s):  
Laura Chalupowicz ◽  
Isaac Barash ◽  
Mary Panijel ◽  
Guido Sessa ◽  
Shulamit Manulis-Sasson

Gall formation by Pantoea agglomerans pv. gypsophilae is controlled by hrp/hrc genes, phytohormones, and the quorum-sensing (QS) regulatory system. The interactions between these three components were investigated. Disruption of the QS genes pagI and pagR and deletion of both substantially reduced the transcription levels of the hrp regulatory genes hrpXY, hrpS, and hrpL, as determined by quantitative reverse-transcriptase polymerase chain reaction. Expression of hrpL in planta was inhibited by addition of 20 μM or higher concentrations of the QS signal C4-HSL. The pagR and hrpL mutants caused an equivalent reduction of 1.3 orders in bacterial multiplication on bean leaves, suggesting possible mediation of the QS effect on epiphytic fitness of P. agglomerans pv. gypsophilae by the hrp regulatory system. indole-3-acetic acid (IAA) and cytokinin significantly affected the expression of the QS and hrp regulatory genes. Transcription of pagI, pagR, hrpL, and hrpS in planta was substantially reduced in iaaH mutant (disrupted in IAA biosynthesis via the indole-3-acetamide pathway) and etz mutant (disrupted in cytokinin biosynthesis). In contrast, the ipdC mutant (disrupted in IAA biosynthesis via the indole-3-pyruvate pathway) substantially increased expression of pagI, pagR, hrpL, and hrpS. Results presented suggest the involvement of IAA and cytokinins in regulation of the QS system and hrp regulatory genes.


Sign in / Sign up

Export Citation Format

Share Document