scholarly journals Stagonospora avenae Secretes Multiple Enzymes that Hydrolyze Oat Leaf Saponins

2000 ◽  
Vol 13 (10) ◽  
pp. 1041-1052 ◽  
Author(s):  
John P. Morrissey ◽  
Jos P. Wubben ◽  
Anne E. Osbourn

The phytopathogenic fungus Stagonospora avenae is able to infect oat leaves despite the presence of avenacoside saponins in the leaf tissue. In response to pathogen attack, avenacosides are converted into 26-desglucoavenacosides (26-DGAs), which possess antifungal activity. These molecules are comprised of a steroidal backbone linked to a branched sugar chain consisting of one α-L-rhamnose and two (avenacoside A) or three (avenacoside B) β-D-glucose residues. Isolates of the fungus that are pathogenic to oats are capable of sequential hydrolysis of the sugar residues from the 26-DGAs. Degradation is initiated by removal of the L-rhamnose, which abolishes antifungal activity. The D-glucose residues are then hydrolyzed by β-glucosidase activity. A comprehensive analysis of saponin-hydrolyzing activities was undertaken, and it was established that S. avenae isolate WAC1293 secretes three enzymes, one α-rhamnosidase and two β-glucosidases, that carry out this hydrolysis. The major β-glucosidase was purified and the gene encoding the enzyme cloned. The protein is similar to saponin-hydrolyzing enzymes produced by three other phytopathogenic fungi, Gaeumannomyces graminis, Septoria lycopersici, and Botrytis cinerea, and is a family 3 β-glucosidase. The gene encoding the β-glucosidase is expressed during infection of oat leaves but is not essential for pathogenicity.

2004 ◽  
Vol 186 (15) ◽  
pp. 4885-4893 ◽  
Author(s):  
Takane Katayama ◽  
Akiko Sakuma ◽  
Takatoshi Kimura ◽  
Yutaka Makimura ◽  
Jun Hiratake ◽  
...  

ABSTRACT A genomic library of Bifidobacterium bifidum constructed in Escherichia coli was screened for the ability to hydrolyze the α-(1→2) linkage of 2′-fucosyllactose, and a gene encoding 1,2-α-l-fucosidase (AfcA) was isolated. The afcA gene was found to comprise 1,959 amino acid residues with a predicted molecular mass of 205 kDa and containing a signal peptide and a membrane anchor at the N and C termini, respectively. A domain responsible for fucosidase activity (the Fuc domain; amino acid residues 577 to 1474) was localized by deletion analysis and then purified as a hexahistidine-tagged protein. The recombinant Fuc domain specifically hydrolyzed the terminal α-(1→2)-fucosidic linkages of various oligosaccharides and a sugar chain of a glycoprotein. The stereochemical course of the hydrolysis of 2′-fucosyllactose was determined to be inversion by using 1H nuclear magnetic resonance. The primary structure of the Fuc domain exhibited no similarity to those of any glycoside hydrolases (GHs) but showed high similarity to those of several hypothetical proteins in a database. Thus, it was revealed that the AfcA protein constitutes a novel inverting GH family (GH family 95).


Author(s):  
Marina Palfi ◽  
Paško Konjevoda ◽  
Karolina Vrandečić

In vitro study of the effect of different volumes of twelve essential oils on the mycelial growth of economically significant phytopathogenic fungi (Fusarium oxysporum and Botrytis cinerea) and it was compared to the effect of a fungicide. The antifungal activity of essential oils is decreased with the duration of incubation and it differs depending on the type of phytopathogenic fungus and the applied volume. The most effective antifungal effect on both tested fungi was in the essential oil of thyme, with lowest values of IC50 while the weakest effect was in essential oils of eucalyptus and lemon, with the highest values of IC50. Certain essential oils, when applied in certain volumes, had the same or even better effect on the inhibition of the growth of mycelium when compared to the tested fungicides.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3256
Author(s):  
Luis C. Chitiva-Chitiva ◽  
Cristóbal Ladino-Vargas ◽  
Luis E. Cuca-Suárez ◽  
Juliet A. Prieto-Rodríguez ◽  
Oscar J. Patiño-Ladino

In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1–3), one dihydrochalcone (4) and a mixture of sterols (5–7). Seven derivatives (8–14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure–activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 94
Author(s):  
Cláudia Ferreira ◽  
Rui Oliveira

Synthetic fungicides for crops protection raise environmental and human concerns due to accumulation in edible vegetables, showing significant toxicity to humans, and in soil, groundwater and rivers, affecting ecological balance. In addition, they are prone to the development of resistant strains because of the single target-based mechanism of action. Plant extracts provide attractive alternatives, as they constitute a rich source of biodegradable secondary metabolites, such as phenols, flavonoids and saponins, which have multiple modes of antifungal action and a lower probability of the development of resistant fungi. This work has the objective of identifying plant extracts with antifungal activity, aiming to contribute to food safety and sustainable agricultural practices. We selected a saponin-containing plant, Plantago major, and extracted secondary metabolites with 50% (v/v) ethanol, dried by evaporation, and dissolved in water. For antifungal activity, the phytopathogenic fungi Colletotrichum acutatum, Colletotrichum gloeosporioides, Colletotrichum godetiae, Colletotrichum nymphaeae, Diplodia corticola and Phytophthora cinnamomi were selected because they affect fruits and vegetables, such as strawberry, almond, apple, avocado, blueberry and chestnut trees. The aqueous extract was incorporated into PDA medium at different concentrations and mycelial discs were placed in the center of each Petri dish. Growth was measured as the radial mycelial growth at 3, 6, and 9 days incubation at 25 °C in the dark. The maximum growth inhibition (32.2%) was obtained against P. cinnamomi with 2000 µg/mL extract followed by C. gloeosporioides (25.7%) on the sixth day and by C. godetiae and C. nymphaeae (21.1%) on the ninth day. Results show that P. major presents antifungal activity in all phytopathogenic fungi tested and the extract can be used to protect important crops, by inhibiting the development of fungal infections and promoting food security and a sustainable agriculture.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Paraj Shukla ◽  
Suresh Walia ◽  
Vivek Ahluwalia ◽  
Balraj S. Parmar ◽  
Muraleedharan G. Nair

Thirty known dialkanoates of ethylene, propylene and diethylene glycols were synthesized by reacting the glycols with acyl chlorides and their structures confirmed by IR, NMR and mass spectral analyses. They exhibited significant antifungal activity against two phytopathogenic fungi Rhizoctonia solani Kuehn and Sclerotium rolfsii Sacc in a dose dependent manner. Propylene glycol dipentanoate was the most active against R. solani. followed by diethylene glycol dibutanoate and ethylene glycol dibutanoate. Against S. rolfsii ethylene glycol diheptanoate was found to be most active followed by diethylene glycol diisobutanoate As compared to the standard reference benomyl (EC50 5.16 μg/mL), the potential alkanediol dialkanoates showed EC50 in the range of 33 – 60 μg/mL.


2012 ◽  
Vol 11 (8) ◽  
pp. 1055-1066 ◽  
Author(s):  
Matthias Kretschmer ◽  
Jana Klose ◽  
James W. Kronstad

ABSTRACTAn understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogenUstilago maydis. However,mfe2mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in thehad1gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog,had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of anmfe2Δ mutant. We also show that short-chain fatty acids induce cell death inU. maydisand that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms byU. maydisthat includes potential metabolic contributions to proliferationin plantaand an effect on virulence-related morphogenesis.


Molecules ◽  
2012 ◽  
Vol 17 (11) ◽  
pp. 13026-13035 ◽  
Author(s):  
Xin-Juan Yang ◽  
Fang Miao ◽  
Yao Yao ◽  
Fang-Jun Cao ◽  
Rui Yang ◽  
...  

1984 ◽  
Vol 24 (125) ◽  
pp. 213 ◽  
Author(s):  
GCJ Irving ◽  
D Bouma

Experiments were done to determine what proportion of the phosphate extracted from fresh leaf tissue by five drops of 10 N H2SO4 represents inorganic tissue phosphate, and to what extent hydrolysis of organic phosphates during and after the extraction, and during the development of the blue phosphomolybdate complex, could contribute to the values obtained. The extraction is the basis of a simple and rapid test for the assessment of the phosphorus status of subterranean clover (Bouma and Dowling 1982). Extraction of leaf tissue of subterranean clover and sunflower with 0.2 M HClO4 at O�C, which was shown to extract inorganic leaf phosphorus without causing significant hydrolysis of organic phosphates, gave values not significantly different from those in H2SO4 extracts. The rate of hydrolysis of endogenous organic phosphates in tissue, extracted and left at room temperature for periods of up to 40 min. after adding H2SO4, did not differ significantly from zero. Errors due to hydrolysis during the 30 min. previously recommended for colour development are reduced to negligible proportions by reducing the time for colour development to 10 min. and by adding citric acid at this point. Anion-exchange chromatography of 10 N H2SO4 and 0.2 M HClO4 extracts confirmed the similarity of their composition and provided estimates of the various phosphate compounds present. The extraction of fresh leaf tissue with 10 N H2SO4 provides a satisfactory estimate of the endogenous inorganic phosphorus content.


Sign in / Sign up

Export Citation Format

Share Document