scholarly journals Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea

2018 ◽  
Vol 16 (1) ◽  
pp. e1002 ◽  
Author(s):  
Kazem Kasfi ◽  
Parissa Taheri ◽  
Behrooz Jafarpour ◽  
Saeed Tarighi

The objective of this study was to identify grapevine epiphytic yeasts and bacteria for biocontrol of Botrytis cinerea on grapes. Antagonistic yeasts and bacteria were isolated from the epiphytic flora associated with grape berries and leaves cv. ‘Thompson seedless’ from vineyards in Iran and identified by sequencing the conserved genomic regions. A total of 130 yeast and bacterial isolates from the surface of grapevine were screened in vitro for determining their antagonistic effect against B. cinerea and used to control postharvest gray mold. Among the 130 isolates, five yeasts and four bacterial isolates showed the greatest antagonistic activity in vitro against B. cinerea. Two yeasts species including Meyerozyma guilliermondii and Candida membranifaciens had high antagonistic capability against the pathogen. Also, 4 bacterial isolates belonging to Bacillus sp. and Ralstonia sp. showed significant biocontrol effect against B. cinerea. The isolates were capable of producing volatile and non-volatile substances, which suppressed the pathogen growth. The antagonistic activity of selected yeasts and bacteria against the pathogen was investigated on wounded berries of ‘Thompson seedless’. On small clusters with intact berries, all of the antagonistic isolates considerably reduced the decay on grape berries and inhibition of gray mold incidence on fruits treated by these isolates was less than 50%, except for the isolate N1, which had higher capability in inhibiting the disease incidence. These results suggest that antagonist yeasts and bacteria with potential to control B. cinerea on grape can be found in the microflora of grape berries and leaves.

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 307-314 ◽  
Author(s):  
E. Feliziani ◽  
J. L. Smilanick ◽  
D. A. Margosan ◽  
M. F. Mansour ◽  
G. Romanazzi ◽  
...  

Potassium sorbate, a program of four fungicides, or one of three chitosan formulations were applied to clusters of ‘Thompson Seedless’ grape berries at berry set, pre-bunch closure, veraison, and 2 or 3 weeks before harvest. After storage at 2°C for 6 weeks, the natural incidence of postharvest gray mold was reduced by potassium sorbate, the fungicide program, or both together in a tank mixture, in 2009 and 2010. In 2011, the experiment was repeated with three chitosan products (OII-YS, Chito Plant, and Armour-Zen) added. Chitosan or fungicide treatments significantly reduced the natural incidence of postharvest gray mold among grape berries. Berries harvested from vines treated by two of the chitosan treatments or the fungicide program had fewer infections after inoculation with Botrytis cinerea conidia. None harmed berry quality and all increased endochitinase activity. Chitosan decreased berry hydrogen peroxide content. One of the chitosan formulations increased quercetin, myricetin, and resveratrol content of the berry skin. In another experiment, ‘Princess Seedless’ grape treated with one of several fungicides before 4 or 6 weeks of cold storage had less decay than the control. Fenhexamid was markedly superior to the other fungicides for control of both the incidence and spread of gray mold during storage.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Hind Lahmyed ◽  
◽  
Rachid Bouharroud ◽  
Redouan Qessaoui ◽  
Abdelhadi Ajerrar ◽  
...  

The present work aims to isolate actinomycete bacteria with antagonistic abilities towards Botrytis cinerea, the causal agent of gray mold, from a soil sample collected from the rhizosphere of a healthy tomato grove. In vitro confrontation led to the isolation of 104 actinomycete isolates; fifteen isolates have shown the most significant mortality rate of the mycelial growth of B. cinerea (>50%). Based on the results of this screening, representative strains were selected to verify their in vivo antagonistic activity on tomato fruits; the reduction of B. cinerea has a percentage ranging from 52.38% to 96.19%. Furthermore, the actinomycete isolates were evaluated for their plant growth-promoting (PGP) properties and their ability to produce biocontrol-related extracellular enzymes viz., amylase, protease, cellulase, chitinase, esterases, and lecithinase. Indeed, Ac70 showed high β-1,3-glucanase activity and siderophore production (17U/ml and 43% respectively), and the highest chitinase activity (39μmol/ml) was observed for Ac24. These results indicated that these actinomycetes might potentially control gray mold caused by B. cinerea on tomato fruits. Investigations on enhancing the efficacy and survival of the biocontrol agent in planta and finding out the best formulation are recommended for future research.


2019 ◽  
Vol 57 (2) ◽  
pp. 222-229
Author(s):  
Alexandra González-Esparza ◽  
Kong S. Ah-Hen ◽  
Osvaldo Montenegro ◽  
Erika Briceño ◽  
Joaquín Stevenson ◽  
...  

The aim of this study is to evaluate the survival rate and effective antagonistic activity against Botrytis cinerea, responsible for grey mould on harvested fruits and vegetables, of yeast Rhodotorula mucilaginosa, isolated and identified from the natural microbiota of murta (Chilean guava) berries, after spray drying at different inlet air temperatures, mass per volume ratio of encapsulating agent (maltodextrin) and feed flow rates. The 100 % survival of the yeast was obtained after spray drying with 18 % maltodextrin at 130 °C inlet temperature and a feed flow rate of 9.25 mL/min. The dried yeast obtained under such conditions had the highest antagonistic activity in vitro and in vivo on apples, which showed that spray drying is a valid method to produce active dried cells of R. mucilaginosa that can be used for biocontrol of grey mould spoilage. It was also found that the encapsulating agent maltodextrin improved the in vitro antagonistic activity of R. mucilaginosa.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 445-450 ◽  
Author(s):  
G. Romanazzi ◽  
F. Mlikota Gabler ◽  
J. L. Smilanick

The effectiveness of chitosan treatment of table grapes, alone or in combination with ultraviolet-C (UV-C) radiation, to control postharvest gray mold caused by Botrytis cinerea, was determined in California, United States. The influence of these treatments on catechin and resveratrol contents and chitinase activity in grape berry skins also was assessed. Clusters of cvs. Thompson Seedless, Autumn Black, and Emperor were sprayed in the vineyard with 1% chitosan, then harvested daily for 5 days. Promptly after harvest, they were inoculated with B. cinerea. Decay incidence and disease severity were significantly reduced by chitosan, which was most effective on berries harvested 1 or 2 days after treatment. In another experiment, grape berries were sprayed in the vineyard with chitosan, harvested 2 days later, irradiated for 5 min with UV-C (0.36 J/cm2), and inoculated with B. cinerea 2 days later. Combined chitosan and UV-C treatments applied to cv. Autumn Black or selection B36-55 were synergistic in reducing gray mold incidence and severity compared with either treatment alone. Preharvest chitosan treatment increased neither concentration of catechin or resveratrol nor activity of chitinase in berry skin. Conversely, UV-C irradiation, alone or combined with chitosan treatment, induced catechin in cv. Autumn Black berries and trans-resveratrol in both cv. Autumn Black and selection B36-55.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 309-316 ◽  
Author(s):  
F. Mlikota Gabler ◽  
J. L. Smilanick ◽  
J. M. Ghosoph ◽  
D. A. Margosan

The influence of brief immersion of grape berries in water or ethanol at ambient or higher temperatures on the postharvest incidence of gray mold (caused by Botrytis cinerea) was evaluated. The incidence of gray mold among grape berries that were untreated, or immersed for 1 min in ethanol (35% vol/vol) at 25 or 50°C, was 78.7, 26.2, and 3.4 berries/kg, respectively, after 1 month of storage at 0.5°C and 2 days at 25°C. Heated ethanol was effective up to 24 h after inoculation, but less effective when berry pedicels were removed before inoculation. Rachis appearance, epicuticular wax content and appearance, and berry shatter were unchanged by heated ethanol treatments, whereas berry color changed slightly and treated grape berries were more susceptible to subsequent infection. Ethanol and acetaldehyde contents of grape berries were determined 1, 7, and 14 days after storage at 0.5°C following treatment for 30 or 90 s at 30, 40, or 50°C with water, or 35% ethanol. Highest residues (377 μg/g of ethanol and 13.3 μg/g of acetaldehyde) were in berries immersed for 90 s at 50°C in ethanol. Among ethanol-treated grape berries, the ethanol content declined during storage, whereas acetaldehyde content was unchanged or increased. Untreated grape berries initially contained ethanol at 62 μg/g, which then declined. Acetaldehyde content was 0.6 μg/g initially and changed little during storage.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1019-1025 ◽  
Author(s):  
F. Mlikota Gabler ◽  
R. Fassel ◽  
J. Mercier ◽  
J. L. Smilanick

Control of postharvest gray mold, caused by Botrytis cinerea, on Thompson Seedless grape by biofumigation with a rye grain formulation of Muscodor albus, a fungus that produces volatiles lethal to many microorganisms, was evaluated. The influences of temperature, biofumigant dosage, and interval between inoculation and treatment on disease incidence and severity on detached single berries were assessed. When biofumigation began within 24 h after inoculation, higher M. albus dosages (≥50 g of the M. albus grain formulation per kilogram of grapes at 20°C or 100 g/kg at 5°C) stopped infections and control persisted after M. albus removal. Biofumigation was more effective at 20 than 5°C. Among inoculated clusters inside clamshell boxes incubated for 7 days at 15°C, gray mold incidence was reduced from 20.2% among untreated grape fruit to less than 1%, when ≥5 g of the formulation per kilogram of grapes was added. Among grape berries commercially packaged in ventilated polyethylene cluster bags incubated for 7 days at 15°C, gray mold incidence was 40.5% among untreated fruit and 11.1 or 6.7% when the formulation at 5 or 20 g/kg, respectively, had been added. In the same packaging, among grape berries incubated for 28 days at 0.5°C, gray mold incidence was 42.8% among untreated fruit and 4.8 or 4.0% when the formulation at 5 or 10 g/kg, respectively, had been added. Lower dosages (≤20 g/kg) suppressed disease development while M. albus was present; however, after their removal, B. cinerea resumed growth and gray mold incidence increased. Placement of M. albus inside grape packages significantly controlled gray mold and may be a feasible approach to manage postharvest decay of table grape.


2019 ◽  
Author(s):  
tariq pervaiz ◽  
Haifeng Jia ◽  
Peian Zhang ◽  
Muhammad Salman Haider ◽  
Suwen Lu ◽  
...  

Abstract Background: Plants have great potential to protect against biotic and abiotic stresses. Hence, the interaction between defense signaling networks is incredible, which can either be activated with the application of growth elicitors or antimicrobial organic compounds. Results: In this study, chitosan (15kDa) is used against grey mold (Botrytis cinerea) in two grape varieties (Shine-Muscat and Kyoho). The findings depicted that the interaction of DEGs and KEGGs in control and treated samples of grapevine, which provides the evidence for selection of gray mold defense responsive genes and chitosan for subsequent application in grapevine production/postharvest. The genes encoding cyclic nucleotide gated ion channels (CNGCs) and CaM/CML expressed a large number of transcripts, meanwhile, in treated samples, CaM/CML and RPS2 showed the highest number of up-regulated genes. In plant hormone signal transduction pathway, treated samples AUXIAA and SAUR again the highest number of transcripts were found. In correlation with metabolome analysis, 20 differentially expressed metabolites were recorded. In the negative correlation in the control samples of Kyoho vs Shine mascate showed 224 and 157 up and down-regulated respectively. Moreover, antioxidants were also significantly regulated with the chitosan application and reduced the lesion diameter, water loss and disease incidence up to 12 days. In both varieties, the chitosan treatment superoxide dismutase, peroxidase, Malondialdehyde, catalase, and proline content was significantly increased during storage. Conclusion: The results depicted that at gene expression levels was varied at different fruit growth developmental stages, and the most effective in case of plant-pathogen interaction. Chitosan is seen to be more effective in both varieties and it acts as an anti-fungal agent. The transcriptomic study also confirmed that at the transcriptome level expression was higher in treated samples, however in general transcription factor have not much affected with chitosan application.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1716
Author(s):  
Kallimachos Nifakos ◽  
Polina C. Tsalgatidou ◽  
Eirini-Evangelia Thomloudi ◽  
Aggeliki Skagia ◽  
Dimitrios Kotopoulis ◽  
...  

Botrytis bunch rot caused by Botrytis cinerea is one of the most economically significant post-harvest diseases of grapes. In the present study, we showed that the bacterial strain Bvel1 is phylogenetically affiliated to Bacillus velezensis species. The strain Bvel1 and its secreted metabolites exerted an antifungal activity, under in vitro conditions, against B. cinerea. UHPLC–HRMS chemical analysis revealed that iturin A2, surfactin-C13 and -C15, oxydifficidin, bacillibactin, L-dihydroanticapsin, and azelaic acid were among the metabolites secreted by Bvel1. Treatment of wounded grape berries with Bacillus sp. Bvel1 cell culture was effective for controlling grey mold ingress and expansion in vivo. The effectiveness of this biological control agent was a function of the cell culture concentration of the antagonist applied, while preventive treatment proved to be more effective compared to curative. The strain Bvel1 exhibited an adequate colonization efficiency in wounded grapes. The whole-genome phylogeny, combined with ANI and dDDH analyses, provided compelling evidence that the strain Bvel1 should be taxonomically classified as Bacillus velezensis. Genome mining approaches showed that the strain Bvel1 harbors 13 antimicrobial biosynthetic gene clusters, including iturin A, fengycin, surfactin, bacilysin, difficidin, bacillaene, and bacillibactin. The results provide new insights into the understanding of the endophytic Bacillus velezensis Bvel1 biocontrol mechanism against post-harvest fungal pathogens, including bunch rot disease in grape berries.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 582 ◽  
Author(s):  
Khamis Youssef ◽  
Sergio Ruffo Roberto ◽  
Admilton G. de Oliveira

Potassium bicarbonate (PB), calcium chelate (CCh), and sodium silicate (SSi) have been extensively used as antifungal generally recognized as safe (GRAS) compounds against plant pathogenic fungi. In this research, in in vitro tests, the radial growth, conidial germination, and germ tube elongation of Botrytis cinerea was completely inhibited at 0.3% of PB, SSi, and CCh. In in vivo tests, application of PB, SSi, and CCh completely inhibited the occurrence of gray mold incidence of inoculated ‘Italia’ grape berries at concentrations of 1.0, 0.8, and 0.8%, respectively. In order to investigate the detailed mechanisms by which salts exhibited antifungal activity, we analyzed their influence on morphological changes by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and also on reactive species of oxygen (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) content. Defects such as malformation and excessive septation were detected on salt-treated hyphae morphology observed by SEM. The internal structure of conidia treated or not with salt solutions was examined by TEM. In treated conidia, most of the conidia were affected and cellular vacuolization and cytoplasmic disorganization was observed. For ROS accumulation, a higher increase was observed in fluorescent conidia in presence of PB, SSi, and CCh by 75, 68, and 70% as compared to control, respectively. MMP was significantly decreased after salt application indicating a loss of mitochondria function. Also, luminescence showed that B. cinerea-conidia treated with salts contained less ATP than the untreated conidia. The results obtained herein are a step towards a comprehensive understanding of the mode of action by which salts act as antifungal agents against B. cinerea.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


Sign in / Sign up

Export Citation Format

Share Document