scholarly journals Occurrence of Grapevine leafroll-associated virus 1 in Two Ornamental Grapevine Cultivars in Washington State

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 613-613 ◽  
Author(s):  
G. Karthikeyan ◽  
O. J. Alabi ◽  
R. A. Naidu

Roger's Red, an interspecific hybrid between wild grape (Vitis californica, native to northern California) and the V. vinifera cv. Alicante Bouschet (1), and Claret Vine (V. vinifera cv. Purpurea Nana) are grown for their ornamental value in home gardens and other settings. We collected potted grapevines of Roger's Red and Claret Vine showing dull green-to-scarlet red leaves from two different retail nurseries in the Richland-Kennewick area and Prosser, WA, respectively. Since these symptoms ‘mimic’ grapevine leafroll disease, we tested petiole samples from four grapevines per cultivar for a panel of grapevine-infecting viruses by single-tube one-step reverse transcription (RT)-PCR (4). All samples tested positive only for Grapevine leafroll-associated virus 1 (GLRaV-1; genus Ampelovirus, family Closteroviridae). To further confirm these results, total RNA was subjected to RT-PCR to amplify a portion of the heat shock protein 70 homolog (HSP70h), coat protein duplicate 2 (CPd2), and ORF 9 (p24) of GLRaV-1. RT was performed at 52°C for 60 min, followed by 35 cycles of PCR (30 s denaturation at 94°C, 45 s annealing at 55°C, and 30 s extension at 72°C) and a 5 min final extension step at 72°C. Primers specific to HSP70h (HSP70h/416F: 5′-CAGGCGTCGTTTGTACTGTG and HSP70h/955R: 5′-TCGGACAGCGTTTAAGTTCC), CPd2 (CPd2/F: 5′-GTTACGGCCCTTTGTTTATTATGG and CPd2/R: 5′-CGACCCCTTTATTGTTTGAGTATG) and ORF 9 (p24/F: 5′-CGATGGCGTCACTTATACCTAAG and p24/R (5′-CACACCAAATTGCTAGCGATAGC) were designed based on GLRaV-1 sequence (GenBank Accession No. AF195822) to amplify 540, 398, and 633 base pair (bp) DNA fragments, respectively. To verify that the amplified products were specific to the genome of GLRaV-1, the amplicons were cloned into pCR2.1 vector (Invitrogen Corp, Carlsbad, CA) and three independent clones for each amplicon were sequenced in both directions. Pairwise comparison of HSP70h (Accession Nos. HQ833472 and HQ833473), CPd2 (Accession Nos. HQ833474 and HQ833475), and p24 (Accession Nos. HQ833476 and HQ833477) sequences from Roger's Red and Claret Vine showed 100, 96, and 99% identities, respectively, between them, and 86 to 100, 80 to 97, and 86 to 90% nucleotide sequence identities, respectively, with corresponding sequences of GLRaV-1 isolates deposited in GenBank. We further confirmed the presence of GLRaV-1 in these two ornamental grape cultivars by double antibody sandwich-ELISA using commercially available antibodies (Bioreba AG, Reinach, Germany). Previous studies have reported the presence of GLRaV-2 and -3 (1,3) and Grapevine virus A and B (2,3) in Roger's Red. To our knowledge, this study represents the first report of the occurrence of GLRaV-1 in two Vitis species distributed as ornamental grapes. It is important to prevent virus spread via the supply of virus-tested ornamental grapevines by commercial nurseries. References: (1) G. S. Dangl et al. Am. J. Enol. Vitic. 61:266, 2010. (2) D. A. Golino et al. Phytopathology (Abstr.) 99(suppl.):S44, 2009. (3) V. Klaassen et al. Online publication. doi:10.1094/PDIS-09-10-0621. Plant Dis., 2011. (4) T. A. Mekuria et al. Phytopathology (Abstr.) 99(suppl.):S83, 2009.

2005 ◽  
Vol 30 (5) ◽  
pp. 538-542
Author(s):  
Andreia E Moreira ◽  
José O Gaspar ◽  
Hugo Kuniyuki

O vírus A da videira (Grapevine virus A, GVA) e o vírus B da videira (Grapevirus virus B, GVB) estão associados à acanaladura do lenho de Kober ("Kober stem grooving") e ao fendilhamento cortical da videira ("grapevine corky bark"), respectivamente. Este trabalho descreve o uso de sondas moleculares de cDNA na detecção de isolados do GVA (GVA-SP) e do GVB (GVB-C-SP e GVB-I-SP) em videiras (Vitis spp.) e fumo (Nicotiana occidentalis). As sondas marcadas com digoxigenina foram produzidas por RT-PCR utilizando oligonucleotídeos específicos para os genes da proteína capsidial. Os RNA totais foram extraídos de 45 plantas de diversas variedades de videira e de 13 plantas de fumo inoculadas mecanicamente com o GVB. Os RNA extraídos das plantas infetadas, indexadas biologicamente, hibridizaram com as sondas, não se verificando reação com plantas sadias. Para confirmar os resultados de hibridização, foram também feitos testes de RT-PCR. A utilização de hibridização "dot-blot" com sondas de cDNA mostrou-se eficaz na detecção dos vírus com especificidade e sensibilidade, ressaltando-se que, preferencialmente, folhas maduras e ramos dormentes devem ser utilizados nos testes diagnósticos para o GVB e GVA, respectivamente.


Author(s):  
Eminur Elçi ◽  
Mona Gazel ◽  
Kadriye Çağlayan

Grapevine leafroll disease is one of the worldwide diseases with economic importance among grapevine virus diseases since many years. Grapevine leafroll-associated virus-1 (GLRaV-1) is the first identified virus related to leafroll viruses which are belonged to Closterovirus and Ampelovirus. Leafroll symptoms are typical for this virus and it causes yield losses on grapevines. Pomegranates are also economically important trees and up to now; only a few viral agents were identified in this plant species and in the last years, it was reported that pomegranate could be as a new host of GLRaV-1. Aim of this study was to compare GLRaV-1 isolates from grapevine and pomegranates. For this purpose, dsRNA and total RNA isolations were done and RT-PCR analysis were conducted by using primers of movement protein (p24) and heatshock70 protein (HSP70h) genes of GLRaV-1 and PCR products were cloned and sequenced in the collected samples from Hatay and Niğde in 2014. -PCR analysis was done by using degenerated primer heatshock 70 homolog protein of Closterovirus. Blast and phylogenetic analysis were performed with the obtained partial nucleotid sequences. At the end of this study, it was ensured that GLRaV-1 isolates isolated from the pomegranate, which is thought to be a new host, were analysed comparatively with the grapevine isolates and high similarities were detected between isolates.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1250-1250 ◽  
Author(s):  
T. Mekuria ◽  
R. R. Martin ◽  
R. A. Naidu

Grapevine fanleaf virus (GFLV; genus Nepovirus, family Comoviridae), responsible for fanleaf degeneration disease, is one of the most important viruses of grapevines worldwide (1). During our reconnaissance studies during 2007, dormant wood cuttings from individual grapevines of wine grape cv. Chardonnay were collected randomly from two geographically separate vineyards in eastern Washington State. Extracts made from cambial scrapings of these cuttings were tested separately for different viruses by single-tube reverse transcription (RT)-PCR using virus-specific primers. Two of the thirty-one grapevines in one vineyard tested positive for GLFV as mixed infection with Grapevine leafroll-associated virus (GLRaV)-3. In another vineyard, six of the twenty-six grapevines tested positive for GFLV as mixed infection with GLRaV-1, GLRaV-3, and Grapevine virus A (GVA) A forward primer (5′-ACCGGATTGACGTGGGTGAT, corresponding to nucleotides [nt] 2231–2250) and reverse primer (5′-CCAAAGTTGGTTTCCCAAGA, complementary to nt 2533–2552) specific to RNA-2 of GFLV-F13 isolate (GenBank Accession No. X16907) were used in RT-PCR assays for the detection of GFLV (4). Primers used for RT-PCR detection of GLRaV-1, GLRaV-2, and GVA were described in Martin et al (2) and Minafra et al (3). The RT-PCR results indicated mixed infection of GFLV with GLRaV-1, GLRaV-3, and GVA. To confirm the presence of GFLV, the 322-bp sequence representing a portion of the coat protein encoded by RNA-2 genomic segment was cloned into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Amplicons obtained from six individual grapevines in the two vineyards were used for cloning. Three independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 99 to 100% nucleotide sequence identity among themselves, indicating that GFLV isolates from the two vineyards may be identical. A comparison of the consensus sequence (GenBank Accession No. EU573307) with corresponding sequences of other GFLVs deposited in GenBank showed 89 to 91% identity at the nucleotide level and 95 to 99% identity at the amino acid level. However, mixed infection of GFLV with different viruses in the two vineyards suggests separate introduction of the planting material. ELISA with GFLV-specific antibodies further confirmed the presence of the virus in samples that were positive in RT-PCR. To our knowledge, this is the first report of GFLV in grapevines grown in the Pacific Northwest states of the United States. Further investigations are being carried out on the distribution, symptoms, molecular variability, and nematode vector transmission of GFLV. References: (1) P. Andret-Link et al. J. Plant Pathol. 86:183, 2004. (2) R. R. Martin et al. Plant Dis. 89:763, 2005. (3) A. Minafra et al. Arch. Virol. 142:417, 1997 (4) A. Rowhani et al. Phytopathology 83:749, 1993.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1447
Author(s):  
Gérard Hommay ◽  
Louis Wiss ◽  
Catherine Reinbold ◽  
Joël Chadoeuf ◽  
Etienne Herrbach

Distribution patterns of the European fruit lecanium Parthenolecanium corni (Bouché) and of grapevine leafroll-associated virus-1 (GLRaV-1) and grapevine virus A (GVA) were monitored from 2003 to 2015 in a Riesling vine plot in the northeast of France. Virus spread was compared between two periods: 2003–2008 and 2009–2014. The percentage of infected vines increased from 54 to 78% for GLRaV-1 and from 14 to 26% for GVA. The spatial distribution of viruses and of P. corni was analysed using permutation tests and revealed an aggregative pattern. Virus distribution was not associated with the density of P. corni population on grapevines. However, GLRaV-1 and GVA spread mainly from initially infected vines. New GLRaV-1 and GVA infections were more frequent on vines near primarily infected vines, first anisotropically along the row, then between neighbouring rows. Virus spread was similar to those described in literature with grapevine mealybug species. This slow vine-to-vine progression suggests that P. corni was responsible for the virus spread, in accordance with the low mobility and low transmission capacities of its local population.


2015 ◽  
Vol 45 (3) ◽  
pp. 379-385 ◽  
Author(s):  
Aricléia de Moraes Catarino ◽  
Thor Vinícius Martins Fajardo ◽  
Gilvan Pio-Ribeiro ◽  
Marcelo Eiras ◽  
Osmar Nickel

Os objetivos deste trabalho foram identificar as espécies virais presentes em vinhedos comerciais de duas regiões do Nordeste do Brasil e realizar a caracterização molecular parcial de isolados de três espécies virais. A diagnose foi realizada por meio de RT-PCR em tempo real para a detecção de Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), Grapevine virus B (GVB), Grapevine leafroll-associated virus 2, 3 e 4 (GLRaV-2, -3 e -4), Grapevine fleck virus (GFkV), Grapevine rupestris vein feathering virus (GRVFV) e Grapevine fanleaf virus (GFLV). Exceto para GFLV, os vírus avaliados estão amplamente disseminados nas áreas amostradas, frequentemente em altas incidências e em infecções múltiplas, de até 98% e 76,4%, na Zona da Mata e no Vale do São Francisco, respectivamente. Isolados locais de GVA, GVB e GLRaV-3 foram parcialmente caracterizados com base na sequência completa de nucleotídeos do gene da proteína capsidial e apresentaram alta porcentagem de identidade de nucleotídeos com outros isolados brasileiros: 91,2% (GVA), 99,8% (GVB) e 99,7% (GLRaV-3)


2012 ◽  
Vol 102 (7) ◽  
pp. 717-723 ◽  
Author(s):  
J. Le Maguet ◽  
M. Beuve ◽  
E. Herrbach ◽  
O. Lemaire

Grapevine leafroll disease is caused by grapevine leafroll-associated viruses (GLRaVs). These viruses are common in vineyards worldwide and often associated with vitiviruses that are involved in the rugose wood complex of grapevine. Ten mealybug species are known as vectors of one or several of these grapevine viruses, including the apple mealybug Phenacoccus aceris which is widespread in Holarctic regions and able to transmit Grapevine leafroll-associated virus-1 and -3 (GLRaV-1 and -3). Our aim was to characterize the transmission features of leafroll viruses by Phenacoccus aceris in order to better understand the contribution of this mealybug to leafroll epidemics. Results showed that Phenacoccus aceris is able to transmit GLRaV-1, -3, -4, -5, -6, and -9 to grapevine but not GLRaV-7. This is the first report of GLRaV-6 transmission by a mealybug. Also, for the first time it was shown that Phenacoccus aceris could vector vitiviruses Grapevine virus A (GVA) and Grapevine virus B (GVB). First instar nymphs were the most efficient stage in transmitting GLRaV-1, -3, and GVA. This research sheds light on the transmission biology of grapevine viruses by Phenacoccus aceris and represents a step forward to leafroll disease management.


Author(s):  
Jean-Michel Hily ◽  
Veronique Komar ◽  
Nils Poulicard ◽  
Emmanuelle Vigne ◽  
Olivier Jacquet ◽  
...  

Since its identification in 2003, little has been revealed about the spread of grapevine Pinot gris virus (GPGV), an emerging grapevine virus. According to studies from Italy, GPGV transmission in the vineyard can be fast but progressive over the years. To gain new insights into the spread of GPGV infections, we tested 67 grapevines in a single vineyard parcel in southern France. These vines were sampled over eight years (2013-2020) and tested for GPGV by RT-PCR using a new primer pair designed from the recently described genetic diversity of GPGV worldwide. While focusing on a portion of the samples (20), we observed a drastic increase in newly GPGV-infected vines from 2014 (5%, 1 of 20) to 2015 (80%, 16 of 20) and 2016 (90%, 18 of 20). Infected vines were scattered throughout the vineyard with no distinct pattern of distribution and some rare vines remained negative through 2020. Using all available genomic information, we performed Bayesian-based phylogeographic analyses that identified a major intra-vineyard transmission in 2014-2015. To test our model, we analyzed 47 additional grapevines and confirmed the outbreak of GPGV in 2015, validating our in-silico projection. Interestingly, some grapevines remained negative throughout the study, in spite of their close proximity to infected plants. These results raise questions on the dynamic of vector populations and environmental conditions that may be required for virus spread to occur in the vineyard.


2015 ◽  
Vol 50 (7) ◽  
pp. 541-550 ◽  
Author(s):  
Monique Bezerra Nascimento ◽  
Thor Vinícius Martins Fajardo ◽  
Marcelo Eiras ◽  
Ana Beatriz Costa Czermainski ◽  
Osmar Nickel ◽  
...  

Resumo: O objetivo deste trabalho foi avaliar os efeitos de viroses em videiras sintomáticas e assintomáticas sobre as variáveis agronômicas relacionadas ao vigor das plantas e à qualidade enológica da uva, e comparar os isolados virais obtidos nessas duas condições. Realizaram-se dois experimentos com quatro cultivares. Todas as plantas foram indexadas, por meio da reação em cadeia da polimerase via transcrição reversa (RT-PCR) em tempo real, quanto à provável ocorrência dos seguintes vírus: Grapevine virus A (GVA), Grapevine virus B (GVB), Grapevine virus D (GVD), Grapevine leafroll-associated virus (GLRaV-1 ao -4, GLRaV-4 estirpe 5), Grapevine rupestris stem pitting-associated virus (GRSPaV) e Grapevine fleck virus (GFkV). As variáveis avaliadas foram: número de gemas brotadas e não brotadas, número de ramos com ou sem cachos, número total de gemas, número de cachos, massa de cachos frescos, massa total de bagas, massa do engaço, número de bagas por cacho, massa média de baga, sólidos solúveis totais, acidez total titulável, pH, massa de ramos podados ou diâmetros do tronco do porta-enxerto e da copa. Os efeitos negativos foram mais pronunciados nas plantas com sintomas de viroses; no entanto, constatou-se frequentemente que plantas sem sintomas também estavam infectadas. A análise molecular de GRSPaV, GVA e GLRaV-2, isolados de plantas sintomáticas e assintomáticas, resultou em alta percentagem de identidade de nucleotídeos entre isolados homólogos.


Sign in / Sign up

Export Citation Format

Share Document