scholarly journals Sclerotium rolfsii Causes White Rot on Taro in Korea

Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 1000-1000 ◽  
Author(s):  
J.-H. Kwon ◽  
D.-W. Kang ◽  
J. Kim

Taro (Colocasia esculenta L.) is grown throughout the world primarily for its tubers, which become edible after cooking. Taro stems are often used in a traditional soup in South Korea. In September 2012, a suspected white rot of taro occurred in a farmer's fields in Jinju, South Korea. Infected plants gradually withered, a white mycelial mat appeared, and numerous sclerotia developed on the surface of petioles near the soil line. The heavily infected petioles rotted and the entire plant eventually died. The freshly isolated pathogenic fungus was grown on potato dextrose agar (PDA) and examined microscopically. Aerial mycelia usually formed many narrow hyphal strands 4 to 8 μm wide. The white mycelia formed a typical clamp connection structure after 6 days growth at 25°C. The sclerotia were white at first, gradually turned dark brown, and were 1 to 3 mm in diameter. Small globoid sclerotia formed abundantly on PDA after 18 days of growth. Ten 2-month-old potted taro plants were inoculated with S. rolfsii-colonized agar discs directly at the base of each plant and kept at 25°C in a greenhouse to test pathogenicity. Three taro plants were inoculated similarly with uncolonized agar discs as controls. Eight days after inoculation, blight symptoms were observed, and S. rolfsii was reisolated from the artificially inoculated plants. The control taro plants remained healthy. We amplified and sequenced an internal transcribed spacer (ITS) rDNA region of the isolate using the ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers to confirm the identity of the fungus (2). The resulting 684-bp sequence was deposited in GenBank (Accession No. KC491876). A comparison with other sequences available in the GenBank database revealed that the ITS sequence shared 100% similarity with Sclerotium rolfsii sequences (HQ420816 and JN017199). Based on the symptoms, mycological characteristics, ITS sequence analysis, and host plant pathogenicity, this fungus was identified as S. rolfsii Saccardo (1). To our knowledge, this is the first report of white rot in taro caused by S. rolfsii in Korea. References: (1) J. E. Mordue. CMI Descriptions of Pathogenic Fungi and Bacteria. No. 410, 1974. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, 1990.

2021 ◽  
Vol 21 (1) ◽  
pp. 72
Author(s):  
Muhammad Hasan Basri ◽  
Lalu Zulkifli ◽  
Abdul Syukur

Plant damage by pathogenic fungi is often found in plants, one of which is caused by Sclerotium rolfsii. Biological control strategy offers a promising alternative for managing disease in plants because they are environmental friendly compared to pesticides application. One of the biological control offered is by using endophytic fungi isolated from Vitex trivolia L. The aim of the study was to isolate, to identify macroscopic and microscopic endophytic fungi from Vitex trifolia L and to test their antagonism potency against the pathogenic fungus Sclerotium rolfsii in vitro. The isolation obtained 7 endophytic fungi isolates identified based on their genus characteristics, nsmely Periconia sp, Aspergillussp, Dendrophoma  sp, Geotrichum  sp, Ampulliferina  sp, Chalara  sp, dan Bispora sp and 2 isolates have not been identified. The Antibacterial test of the fungi isolate on the 4 tested bacteria showed that of all the fungi isolate have low activity. The antagonism test using the direct opposition method with the PIRG formula, showed that the 3 isolates had high percentage of growth inhibition, in which ALJ1, BLJ5, and ALJ3 isolate has  85%, 90%, and 100% respectively. This potency could be used as biological agents on the pathogenic fungus Sclerotium rolfsii.


1990 ◽  
Vol 36 (1) ◽  
pp. 6-9 ◽  
Author(s):  
S. Pe'er ◽  
I. Chet

Protoplasts from two auxotrophic mutants of Trichoderma harzianum Rifai (ATCC 32173), obtained from young thalli following cell wall digestion by NovoZym 234, were fused in 33% PEG suspended in 10 mM Tris-HCl and 10 mM CaCl2, pH 7.5. The frequency of fusion between lysine- and arginine-requiring auxotrophs resulting in prototrophic strains was about 5%. These prototrophic strains were classified into parental and nonparental types. Colonies developed from single conidia of the nonparental phenotype exhibited prototrophic parental or recombinant phenotypes. The ability of both prototrophic and parental strains to overgrow the soil-borne pathogenic fungi Rhizoctonia solani, Sclerotium rolfsii, and Pythium aphanidermatum in dual cultures was used to evaluate their antagonistic capability. The antagonistic abilities of the prototrophic strains were found to vary with each pathogenic fungus. The prototrophic strain A2 overgrew all the pathogenic fungi more rapidly than the parental strains. Strain A2 effectively controlled Rhizoctonia damping-off of cotton seedlings, in the greenhouse, when compared with the parental strains. Protoplast fusion appears to be a useful tool for combining desirable traits from parental strains to produce improved biocontrol strains. Key words: Trichoderma harzianum, biocontrol, protoplast fusion.


2016 ◽  
Vol 1 (2) ◽  
pp. 6
Author(s):  
Uswatun Hasanah ◽  
Riwayati Riwayati ◽  
Idramsa Idramsa

This study aims to determine the ability of extracts  secondary metabolites of endophytic fungi raru plant Siarang (Cotylelobium melanoxylon) in inhibiting the growth of pathogenic fungi. Pathogenic fungi tested were Collectotrichum, Fusarium oxysporum, Candida albicans and Sclerotium rolfsii. Test antifungal pathogens carried out by using the method of Kirby-Bour, ie by measuring the clear zone located around the paper disc which is the zone of growth inhibition of pathogenic fungi. Measurement of inhibition zone is done by using a caliper or ruler. The results showed that the secondary metabolites of endophytic fungi extracts could inhibit the growth of pathogenic fungus Candida albicans is the clear zone of 10.23 mm. Keywords : endophytic fungus, Cotylelobium melanoxylon, extract of secondary metabolites, fungal pathogens, inhibition zone


Sign in / Sign up

Export Citation Format

Share Document