scholarly journals Genetic Characterization of Barley Net Blotch Resistance Genes

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Patrick D. O'Boyle ◽  
Wynse S. Brooks ◽  
Brian J. Steffenson ◽  
Erik L. Stromberg ◽  
Carl A. Griffey

Net blotch, caused by Pyrenophora teres f. teres, is one of the most devastating diseases of barley (Hordeum vulgare). Efficient utilization of available resistance sources is dependent upon successful characterization of genes conditioning resistance in diverse sources. Five net-blotch-resistant parents and one susceptible parent were intercrossed to identify novel resistance genes and postulate gene number and mode of inheritance. Seedling response to isolate ND89-19 was evaluated in a greenhouse test. Results indicate that the resistant spring barley lines CIho 2291 and CIho 5098 and the winter barley cv. Nomini each have single dominant genes for resistance. Resistance in CIho 5098 is governed by the same dominant gene conferring resistance in Nomini. Resistance in CIho 2291 is controlled by one dominant gene which, putatively, is the same gene conferring resistance in ND B112 but differs from the resistance genes carried by the other parents in this study. The resistance gene in Nomini or CIho 5098 could be pyramided with the resistance gene in CIho 2291 or ND B112 to enhance the durability of resistance against a wide spectrum of P. teres isolates.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2632
Author(s):  
Sewon Oh ◽  
Hyeondae Han ◽  
Daeil Kim

Asian pear scab is a fungal disease caused by Venturia nashicola. The identification of genes conferring scab resistance could facilitate the breeding of disease-resistant cultivars. Therefore, the present study aimed to identify a scab-resistance gene using an interspecific hybrid population ((Pyrus pyrifolia × P. communis) × P. pyrifolia). Artificial inoculation of V. nashicola was carried out for two years. The segregation ratio (1:1) of resistant to susceptible individuals indicated that resistance to V. nashicola was inherited from P. communis and controlled by a single dominant gene. Based on two years phenotypic data with the Kruskal–Wallis test and interval mapping, 12 common markers were significantly associated with scab resistance. A novel scab resistance gene, Rvn3, was mapped in linkage group 6 of the interspecific hybrid pear, and co-linearity between Rvn3 and one of the apple scab resistance genes, Rvi14, was confirmed. Notably, an insertion in pseudo-chromosome 6 of the interspecific hybrid cultivar showed homology with apple scab resistance genes. Hence, the newly discovered Rvn3 was considered an ortholog of the apple scab resistance gene. Since the mapping population used in the present study is a pseudo-BC1 population, pyramiding of multiple resistance genes to pseudo-BC1 could facilitate the breeding of pear cultivars with durable resistance.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 971 ◽  
Author(s):  
Antonín Dreiseitl

Powdery mildew caused by the airborne ascomycete fungus Blumeria graminis f. sp. hordei (Bgh) is one of most common diseases of barley (Hordeum vulgare). This, as with many other plant pathogens, can be efficiently controlled by inexpensive and environmentally-friendly genetic resistance. General requirements for resistance to the pathogens are effectiveness and durability. Resistance of barley to Bgh has been studied intensively, and this review describes recent research and summarizes the specific resistance genes found in barley varieties since the last conspectus. Bgh is extraordinarily adaptable, and some commonly recommended strategies for using genetic resistance, including pyramiding of specific genes, may not be effective because they can only contribute to a limited extent to obtain sufficient resistance durability of widely-grown cultivars. In spring barley, breeding the nonspecific mlo gene is a valuable source of durable resistance. Pyramiding of nonspecific quantitative resistance genes or using introgressions derived from bulbous barley (Hordeum bulbosum) are promising ways for breeding future winter barley cultivars. The utilization of a wide spectrum of nonhost resistances can also be adopted once practical methods have been developed.


2015 ◽  
Vol 10 (3) ◽  
pp. 98-101
Author(s):  
Блохин ◽  
Vasiliy Blokhin ◽  
Вильданова ◽  
Gulusa Vildanova ◽  
Нижегородцева ◽  
...  

The most economical and environmentally safe way to control the disease is to use resistant barley varieties of plants. The use of molecular markers, associated with disease resistance genes, predetermine great possibilities, being used as a tool for the selection of breeders. The study aim is to identify varietal specimen, carrying genes, which are encoding resistance to loose smut of barley. A method of DNA-genotyping by PCR markers was used in the study. During the process of the research 83 varietal specimen have been tested, which were selected in the nursery Tatar Research Institute of Agriculture. The following two SCAR-markers, resistant to loose smut: Un8-700R and Un8-700 were used to identify the U8 gene. The studies found, that 36.2% have the gene, encoding the susceptibility to loose smut, in the genome alleles. 5.3% of the total number of varietal specimen was characterized by the presence of the resistance gene Un8 in the genome allele. The other specimen was observed no resistance gene to loose smut. The comparison with accounting data of loose smut spread, provided by the Barley breeding Department, showed no infestation of barley lines with resistance gene of loose smut in natural infectious background. As a result of molecular and genetic evaluation, the five specimen of nursery of Tatar Research Institute of Agriculture were identified with resistance genes in the genome alleles, which had been recommended, as a valuable genotypes for selection according to the loose smut resistance of barley.


Genome ◽  
2006 ◽  
Vol 49 (1) ◽  
pp. 54-63 ◽  
Author(s):  
M L Irigoyen ◽  
E Ferrer ◽  
Y Loarce

Sequences analogous to plant resistance genes of the NBS–LRR class were cloned from the genomic DNA of 11 Avena species with different genomes and levels of ploidy. Three pairs of degenerate primers were used, based on conserved DNA sequence motifs belonging to the NBS domain, and 33 sequences were identified. These were subdivided into 7 classes depending on nucleotide sequence identity. Despite the high level of degeneracy, the primers behaved in a highly selective way; the majority of sequences from the different species obtained with every primer combin ation showed strong identity and were considered homologous. For most species, only one sequence of each class was identified in each genome, suggesting that duplicated sequences are fairly divergent. The strong identity among specific NBS sequences precludes any conclusions being made on the evolution of these species. The genomic organization of the RGA sequences was explored using those of A. strigosa as probes in Southern blots involving digested DNA from 15 Avena species. The hybridization patterns showed wide diversity both among sequences within a species and among species for each sequence. However, the dendrogram generated using the RFLPs showed relationships among species to be in good agreement with those previously established using other molecular markers.Key words: resistance gene analog (RGA), disease resistance genes, diversity, Avena, oats.


2020 ◽  
Vol 8 (12) ◽  
pp. 2021
Author(s):  
Simona Fioriti ◽  
Gianluca Morroni ◽  
Sonia Nina Coccitto ◽  
Andrea Brenciani ◽  
Alberto Antonelli ◽  
...  

One hundred forty-five florfenicol-resistant enterococci, isolated from swine fecal samples collected from 76 pig farms, were investigated for the presence of optrA, cfr, and poxtA genes by PCR. Thirty florfenicol-resistant Enterococcus isolates had at least one linezolid resistance gene. optrA was found to be the most widespread linezolid resistance gene (23/30), while cfr and poxtA were detected in 6/30 and 7/30 enterococcal isolates, respectively. WGS analysis also showed the presence of the cfr(D) gene in Enterococcus faecalis (n = 2 isolates) and in Enterococcus avium (n = 1 isolate). The linezolid resistance genes hybridized both on chromosome and plasmids ranging from ~25 to ~240 kb. Twelve isolates were able to transfer linezolid resistance genes to enterococci recipient. WGS analysis displayed a great variability of optrA genetic contexts identical or related to transposons (Tn6628 and Tn6674), plasmids (pE035 and pWo27-9), and chromosomal regions. cfr environments showed identities with Tn6644-like transposon and a region from p12-2300 plasmid; cfr(D) genetic contexts were related to the corresponding region of the plasmid 4 of Enterococcus faecium E8014; poxtA was always found on Tn6657. Circular forms were obtained only for optrA- and poxtA-carrying genetic contexts. Clonality analysis revealed the presence of E. faecalis (ST16, ST27, ST476, and ST585) and E. faecium (ST21) clones previously isolated from humans. These results demonstrate a dissemination of linezolid resistance genes in enterococci of swine origin in Central Italy and confirm the spread of linezolid resistance in animal settings.


1971 ◽  
Vol 13 (2) ◽  
pp. 251-255 ◽  
Author(s):  
G. Fleischmann ◽  
R. I. H. McKenzie ◽  
W. A. Shipton

The inheritance of genes in three collections of Avena sterilis wild oats conferring resistance to races 216, 264, 295, 305, 326, 330, 332, and 446 of crown rust, Puccinia coronata avenae, was investigated. C. I. 8081 from Portugal contained a partially dominant gene, designated Pc47, which conferred resistance to all eight races. CW486 from Tunisia had a dominant gene, designated Pc50, which gave resistance to all races except 295, 326, and 446. F158 from Israel had two dominant genes; one, designated Pc48, conferred resistance to all the races but 305, while the second, designated Pc49, conferred resistance to races 216, 326, 330, 332, and 446. Genes Pc47, Pc48, Pc49, and Pc50 were inherited independently of each other and of those genes previously isolated from A. sterilis.


Genome ◽  
2006 ◽  
Vol 49 (12) ◽  
pp. 1564-1571 ◽  
Author(s):  
O.M. Manninen ◽  
M. Jalli ◽  
R. Kalendar ◽  
A. Schulman ◽  
O. Afanasenko ◽  
...  

Net blotch of barley ( Hordeum vulgare L.), caused by the fungal phytopathogen Pyrenophora teres Drechs. f. teres Smedeg., constitutes one of the most serious constraints to barley production worldwide. Two forms of the disease, the net form, caused by P. teres f. teres, and the spot form, caused by P. teres f. maculata, are differentiated by the type of symptoms on leaves. Several barley lines with major gene resistance to net blotch have been identified. Earlier, one of these was mapped in the Rolfi × CI 9819 cross to barley chromosome 6H, using a mixture of 4 Finnish isolates of P. teres f. teres. In this study, we used the same barley progeny to map resistance to 4 spot-type isolates and 4 net-type isolates of P. teres. With all net-type isolates, a major resistance gene was located on chromosome 6H, in the same position as described previously, explaining up to 88% of the phenotypic variation in infection response in the progeny. We designate this gene Rpt5. Several minor resistance genes were located on chromosomes 1H, 2H, 3H, 5H, and 7H. These minor genes were not genuinely isolate-specific, but their effect varied among isolates and experiments. When the spot-type isolates were used for infection, a major isolate-specific resistance gene was located on chromosome 5H, close to microsatellite marker HVLEU, explaining up to 84% of the phenotypic variation in infection response in the progeny. We designate this gene Rpt6. No minor gene effects were detected in spot-type isolates. The Ethiopian 2-rowed barley line CI 9819 thus carries at least 2 independent major genes for net-blotch resistance: Rpt5, active against net-type isolates; and Rpt6, active against specific spot-type isolates.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Richard L. Fery ◽  
Philip D. Dukes

Field studies were conducted to characterize the genetic nature of resistance to southern blight (caused bySclerotium rolfsiiSacc.) exhibited by the cowpea [Vigna unguiculata(L.) Walp.] cultivars Carolina Cream and Brown Crowder and to determine if a genetic relationship exists for this resistance between the two cultivars. Examination of the comparative frequency distributions of the parental and progeny populations of the “Carolina Cream” x “Magnolia Blackeye” and “Brown Crowder” x “Magnolia Blackeye” crosses and the corresponding segregation data indicates that the southern blight resistances exhibited by “Carolina Cream” and “Brown Crowder” are conditioned by single dominant genes. Examination of the segregation data from the parental and progeny populations of the “Carolina Cream” x “Brown Crowder” cross suggests that the two resistance genes are not allelic. The availability of each of the resistance genes in cultivar-type genetic backgrounds should allow for rapid incorporation of southern blight resistance genes into other cowpea cultivars by the application of conventional plant breeding methodologies.


1997 ◽  
Vol 20 (1) ◽  
pp. 59-62 ◽  
Author(s):  
M.C. Gonçalves-Vidigal ◽  
Antônio A. Cardoso ◽  
Clibas Vieira ◽  
Luiz S. Saraiva

Bean (Phaseolus vulgaris) lines P.I. 207262 and AB 136, both resistant to delta and kappa races of Colletotrichum lindemuthianum, were crossed with Michelite, Dark Red Kidney, and Perry Marrow, susceptible to both races, and with Cornell 49-242, resistant to delta and susceptible to kappa. F1 and F2 reactions demonstrated that P.I. 207262 carries duplicate dominant genes for resistance to the delta race; AB 136 carries a dominant gene. These resistance genes are independent of the Are gene from Cornell 49-242. With respect to the kappa race, F1 and F2 data showed that the resistance controlled by P.I. 207262 and by AB 136 depends on a single dominant gene. Complementary factors were involved with AB 136 resistance to the delta race and with P.I. 207262 resistance to kappa.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2451-2459 ◽  
Author(s):  
Gebreslasie Zeray Siyoum ◽  
Qingdong Zeng ◽  
Jie Zhao ◽  
Xianming Chen ◽  
Ayele Badebo ◽  
...  

The authors of Siyoum et al. 103:2451-2459 (2019) retracted this article because it proved to contain errors in statistical analyses of the data and subsequent data interpretations. This article was retracted on 14 November 2019. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most devastating wheat diseases in Ethiopia. To study virulence genetics of the pathogen, 117 progeny isolates were produced through sexual reproduction of an Ethiopian isolate of the stripe rust pathogen on Berberis holstii plants under controlled conditions. The parental and progeny isolates were characterized by phenotyping on wheat lines carrying single Yr genes for resistance and genotyped using 10 polymorphic simple sequence repeated (SSR) markers. The progeny isolates were classified into 37 virulence phenotypes and 75 multilocus genotypes. The parental isolate and progeny isolates were all avirulent to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrTr1, YrSP, and Yr76 but virulent to Yr1 and Yr2, indicating that the parental isolate was homozygous avirulent or homozygous virulent at these loci. The progeny isolates segregated for virulence to 12 Yr genes. Virulence phenotypes to Yr6, Yr28, Yr43, and Yr44 were controlled by a single dominant gene; those to Yr7, Yr9, Yr17, Yr27, Yr25, Yr31, and YrExp2 were each controlled by two dominant genes; and the virulence phenotype to Yr8 was controlled by two complementary dominant genes. A linkage map was constructed with seven SSR markers, and 16 virulence loci corresponding to 11 Yr resistance genes were mapped with some loci linked to each other. These results are useful in understanding host–pathogen interactions and selecting resistance genes to develop wheat cultivars with highly effective resistance to stripe rust.


Sign in / Sign up

Export Citation Format

Share Document