scholarly journals Morphological and Molecular Identification of Seedborne Fungi in Squash (Cucurbita maxima, Cucurbita moschata)

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1335-1350 ◽  
Author(s):  
Marwa Moumni ◽  
Mohamed Bechir Allagui ◽  
Valeria Mancini ◽  
Sergio Murolo ◽  
Neji Tarchoun ◽  
...  

Squash is one of the most important crops of tropical and temperate regions, and it can be affected by several fungal pathogens. Most of these pathogens infect the seeds, which become an efficient vehicle to disperse seedborne pathogens over long distances, with consequent severe crop losses. The main objective of this study was the identification of the principal seedborne fungi in seeds extracted from 66 samples of asymptomatic and symptomatic squash fruit (Cucurbita maxima, Cucurbita moschata) collected in two countries, Tunisia and Italy. The symptoms of fruit decay were identified and classified according to lesion size. Following the blotter test, 14 fungal species were detected from the seeds. Seedborne fungi were identified in all fruit samples tested, including asymptomatic fruit. The most frequent fungi from Tunisian seeds were Alternaria alternata (25.1%), followed by Stagonosporopsis cucurbitacearum (24.6%), Fusarium solani (16.6%), Rhizopus stolonifer (13.3%), F. fujikuroi (7.8%), Albifimbria verrucaria (3.3%), and Stemphylium vesicarium (2.3%). For the fruits from Italy, the most frequently identified fungal species in seed samples were Alternaria alternata (40.0%), followed by F. fujikuroi (20.8%), Stemphylium vesicarium (3.0%), and Curvularia spicifera (2.1%). Morphological identification was confirmed by molecular diagnosis using the available species-specific primers. Furthermore, specific primers were designed to identify Albifimbria verrucaria, Paramyrothecium roridum, and Stemphylium vesicarium. Application of seed-health testing methods, including such conventional and molecular diagnostic tools, will help to improve seed quality and crop yields.

3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Domenico Rizzo ◽  
Nicola Luchi ◽  
Daniele Da Lio ◽  
Linda Bartolini ◽  
Francesco Nugnes ◽  
...  

AbstractThe red-necked longhorn beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) is native to east Asia, where it is a major pest of cultivated and ornamental species of the genus Prunus. Morphological or molecular discrimination of adults or larval specimens is required to identify this invasive wood borer. However, recovering larval stages of the pest from trunks and branches causes extensive damage to plants and is timewasting. An alternative approach consists in applying non-invasive molecular diagnostic tools to biological traces (i.e., fecal pellets, frass). In this way, infestations in host plants can be detected without destructive methods. This paper presents a protocol based on both real-time and visual loop-mediated isothermal amplification (LAMP), using DNA of A. bungii extracted from fecal particles in larval frass. Laboratory validations demonstrated the robustness of the protocols adopted and their reliability was confirmed performing an inter-lab blind panel. The LAMP assay and the qPCR SYBR Green method using the F3/B3 LAMP external primers were equally sensitive, and both were more sensitive than the conventional PCR (sensitivity > 103 to the same starting matrix). The visual LAMP protocol, due to the relatively easy performance of the method, could be a useful tool to apply in rapid monitoring of A. bungii and in the management of its outbreaks.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 521
Author(s):  
Juan García-Bernalt Diego ◽  
Pedro Fernández-Soto ◽  
Antonio Muro

Neglected Tropical Diseases (NTDs), particularly those caused by parasites, remain a major Public Health problem in tropical and subtropical regions, with 10% of the world population being infected. Their management and control have been traditionally hampered, among other factors, by the difficulty to deploy rapid, specific, and affordable diagnostic tools in low resource settings. This is especially true for complex PCR-based methods. Isothermal nucleic acid amplification techniques, particularly loop-mediated isothermal amplification (LAMP), appeared in the early 21st century as an alternative to PCR, allowing for a much more affordable molecular diagnostic. Here, we present the status of LAMP assays development in parasite-caused NTDs. We address the progress made in different research applications of the technique: xenomonitoring, epidemiological studies, work in animal models and clinical application both for diagnosis and evaluation of treatment success. Finally, we try to shed a light on the improvements needed to achieve a true point-of-care test and the future perspectives in this field.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Aušra Domanska ◽  
Justin W. Flatt ◽  
Joonas J. J. Jukonen ◽  
James A. Geraets ◽  
Sarah J. Butcher

ABSTRACTHuman parechovirus 3 (HPeV3) infection is associated with sepsis characterized by significant immune activation and subsequent tissue damage in neonates. Strategies to limit infection have been unsuccessful due to inadequate molecular diagnostic tools for early detection and the lack of a vaccine or specific antiviral therapy. Toward the latter, we present a 2.8-Å-resolution structure of HPeV3 in complex with fragments from a neutralizing human monoclonal antibody, AT12-015, using cryo-electron microscopy (cryo-EM) and image reconstruction. Modeling revealed that the epitope extends across neighboring asymmetric units with contributions from capsid proteins VP0, VP1, and VP3. Antibody decoration was found to block binding of HPeV3 to cultured cells. Additionally, at high resolution, it was possible to model a stretch of RNA inside the virion and, from this, identify the key features that drive and stabilize protein-RNA association during assembly.IMPORTANCEHuman parechovirus 3 (HPeV3) is receiving increasing attention as a prevalent cause of sepsis-like symptoms in neonates, for which, despite the severity of disease, there are no effective treatments available. Structural and molecular insights into virus neutralization are urgently needed, especially as clinical cases are on the rise. Toward this goal, we present the first structure of HPeV3 in complex with fragments from a neutralizing monoclonal antibody. At high resolution, it was possible to precisely define the epitope that, when targeted, prevents virions from binding to cells. Such an atomic-level description is useful for understanding host-pathogen interactions and viral pathogenesis mechanisms and for finding potential cures for infection and disease.


2006 ◽  
Vol 31 (2) ◽  
pp. 158-163 ◽  
Author(s):  
Derblai Casaroli ◽  
Danton C. Garcia ◽  
Marlove F. B. Muniz ◽  
Nilson L. de Menezes

O trabalho teve como objetivos avaliar e correlacionar a qualidade sanitária e fisiológica de sementes de abóbora, variedade Menina Brasileira (Cucurbita moschata.). Foram avaliados dois lotes de sementes de abóbora produzidas no sistema agroecológico e quatro no sistema convencional, com e sem tratamento químico. Os lotes foram submetidos aos testes de sanidade, seguindo a metodologia do "Blotter test", com congelamento, germinação e vigor (primeira contagem, índice de velocidade de germinação, envelhecimento acelerado e emergência de plântulas). Os resultados indicaram a separação dos lotes de diferentes origens a partir da qualidade sanitária e fisiológica, onde as maiores incidências de fungos foram observadas nos lotes agroecológicos e o maior potencial fisiológico foi observado nos lotes de origem convencional não tratados. Foram encontrados os fungos Fusarium oxysporum, Alternaria alternata, Cladosporium cucumerinum, Aspergillus niger, Penicillium digitatum, Rhizopus stolonifer e Phoma terrestris. A qualidade sanitária não interferiu na qualidade fisiológica das sementes de abóbora, variedade Menina Brasileira.


2018 ◽  
Vol 3 (5) ◽  
pp. e001069 ◽  
Author(s):  
Albert Picado ◽  
Israel Cruz ◽  
Maël Redard-Jacot ◽  
Alejandro G Schijman ◽  
Faustino Torrico ◽  
...  

It is estimated that between 8000 and 15 000 Trypanosoma cruzi infected babies are born every year to infected mothers in Chagas disease endemic countries. Currently, poor access to and performance of the current diagnostic algorithm, based on microscopy at birth and serology at 8–12 months after delivery, is one of the barriers to congenital Chagas disease (CCD) control. Detection of parasite DNA using molecular diagnostic tools could be an alternative or complement to current diagnostic methods, but its implementation in endemic regions remains limited. Prompt diagnosis and treatment of CCD cases would have a positive clinical and epidemiological impact. In this paper, we analysed the burden of CCD in Latin America, and the potential use of molecular tests to improve access to early diagnosis and treatment of T. cruzi infected newborns.


2013 ◽  
Vol 22 (4) ◽  
pp. 548-553 ◽  
Author(s):  
Ronaldo Luiz Nunes ◽  
Livia Loiola dos Santos ◽  
Eduardo Bastianetto ◽  
Denise Aparecida Andrade de Oliveira ◽  
Bruno Santos Alves Figueiredo Brasil

Anthelmintic resistance is an increasing problem that threatens livestock production worldwide. Understanding of the genetic basis of benzimidazole resistance recently allowed the development of promising molecular diagnostic tools. In this study, isolates of Haemonchus contortus obtained from goats, sheep and buffaloes raised in Brazil were screened for presence of the polymorphism Phe200Tyr in the β-tubulin 1 gene, which confers resistance to benzimidazole. The allelic frequency of the mutation conferring resistance ranged from 7% to 43%, and indicated that resistance to benzimidazole could be found in nematodes isolated from all the ruminant species surveyed. Although significant variation in the frequency of the F200Y mutation was observed between different herds or host species, no significant variation could be found in populations isolated from animals within the same herd. These findings suggest that screening of samples from a few animals has the potential to provide information about the benzimidazole resistance status of the entire herd, which would enable a considerable reduction in the costs of diagnosis for the producer. Molecular diagnosis has practical advantages, since it can guide the choice of anthelmintic drug that will be used, before its application in the herd, thus reducing the economic losses driven by anthelmintic resistance.


1980 ◽  
Vol 37 (2) ◽  
pp. 757-761
Author(s):  
Luiz Antonio Rochelle

De sete cultivares de aboboreiras rasteiras, pertencentes à espécie Cucurbita moschata Duch., duas morangueiras e duas mogangueiras, da espécie Cucurbita maxima Duch., uma aboboreira nao rasteira e uma morangueira pertencente a Cucurbita pepo L., elaborou-se chaves analíticas para determina-los, fundamentando-se nos caracteres morfológicos do caule e das folhas.


2015 ◽  
Vol 39 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Juan Carlos Álvarez-Hernández ◽  
Javier Zaragoza Castellanos-Ramos ◽  
César Leobardo Aguirre-Mancilla ◽  
María Victoria Huitrón-Ramírez ◽  
Francisco Camacho-Ferre

Cucurbita maxima x Cucurbita moschata rootstock are used to prevent infection with Fusarium oxysporum f. sp. niveum in watermelon production; however, this rootstock is not effective against nematode attack. Because of their vigor, the grafted plants can be planted at lower plant densities than the non-grafted plants. The tolerance to Fusarium oxysporum f. sp. niveum and Meloidogyne incognita was assessed in watermelon plants grafted onto a hybrid of Citrullus lanatus cv Robusta or the Cucurbita maxima x Cucurbita moschata cv Super Shintoza rootstocks. The densities of plants were 2083 and 4166 plants ha-1. Non-grafted watermelons were the controls. The Crunchy Red and Sangría watermelon cultivars were used as the scions, it the latter as a pollinator. The experiments were performed for two production cycles in soils infested with Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. The incidence of Fusarium oxysporum f. sp. niveum was significantly greater in the non-grafted than in the grafted plants. The grafted plants presented similar resistance to Fusarium regardless of the rootstock. The root-knot galling index for Meloidogyne incognita was significantly lower in plants grafted onto Citrullus lanatus cv Robusta than onto the other rootstock. The yields of plants grafted onto Citrullus lanatus cv Robusta grown at both plant densities were significantly higher than in the other treatments.


Sign in / Sign up

Export Citation Format

Share Document