scholarly journals Pea seed-borne mosaic virus in Field Pea: Widespread Infection, Genetic Diversity, and Resistance Gene Effectiveness

Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2475-2482 ◽  
Author(s):  
B. S. Congdon ◽  
B. A. Coutts ◽  
M. Renton ◽  
M. Banovic ◽  
R. A. C. Jones

From 2013 to 2015, incidences of Pea seed-borne mosaic virus (PSbMV) infection were determined in semi-leafless field pea (Pisum sativum) crops and trial plots growing in the Mediterranean-type environment of southwest Australia. PSbMV was found at incidences of 2 to 51% in 9 of 13 crops, 1 to 100% in 20 of 24 cultivar plots, and 1 to 57% in 14 of 21 breeding line plots. Crops and plots of ‘PBA Gunyah’, ‘Kaspa’, and ‘PBA Twilight’ were frequently PSbMV infected but none of PSbMV resistance gene sbm1-carrying ‘PBA Wharton’ plants were infected. In 2015, 14 new PSbMV isolates obtained from these various sources were sequenced and their partial coat protein (CP) nucleotide sequences analyzed. Sequence identities and phylogenetic comparison with 39 other PSbMV partial CP nucleotide sequences from GenBank demonstrated that at least three PSbMV introductions have occurred to the region, one of which was previously unknown. When plants of ‘Greenfeast’ and PBA Gunyah pea (which both carry resistance gene sbm2) and PBA Wharton and ‘Yarrum’ (which carry sbm1) were inoculated with PSbMV pathotype P-2 isolate W1, resistance was overcome in a small proportion of plants of each cultivar, showing that resistance-breaking variants were likely to be present. An improved management effort by pea breeders, advisors, and growers is required to diminish infection of seed stocks, avoid sbm gene resistance being overcome in the field, and mitigate the impact of PSbMV on seed yield and quality. A similar management effort is likely to be needed in field pea production elsewhere in the world.

2017 ◽  
Vol 241 ◽  
pp. 163-171 ◽  
Author(s):  
B.S. Congdon ◽  
B.A. Coutts ◽  
R.A.C. Jones ◽  
M. Renton

1979 ◽  
Vol 59 (1) ◽  
pp. 171-175 ◽  
Author(s):  
S. T. ALI-KHAN ◽  
R. C. ZIMMER

Pea seed-borne mosaic virus (PSbMV) was first identified in Canadian field pea (Pisum sativum L.) breeding lines in 1974. Since then, an extensive program has been underway to eradicate this virus from the breeding lines. At the Morden Research Station, nearly 2000 breeding lines were evaluated. The virus was assayed by infectivity tests using the local lesion host Chenopodium amaranticolor, and by a gel immunodiffusion test. PSbMV was detected in 1361 lines. The level of infection within lines varied from 1 to 3%. Due to the restricted extent of the virus in the breeding lines, it was possible to continue the breeding program without a serious loss in germplasm.


2008 ◽  
Vol 59 (12) ◽  
pp. 1130 ◽  
Author(s):  
B. A. Coutts ◽  
R. T. Prince ◽  
R. A. C. Jones

Field and glasshouse experiments (3 of each) were done during 2003–06 to determine the responses of a range of genotypes belonging to 13 species of cool-season crop legumes to infection with Pea seed-borne mosaic virus (PSbMV). Seed quality defects were determined and genotypes of some species were also tested for seed transmission of the virus. In field experiments, of 39 genotypes of field pea (Pisum sativum) evaluated, 15 were ranked as highly susceptible, 10 susceptible, 9 moderately resistant, and 5 resistant, while all 7 lupin species (Lupinus spp.) tested were resistant. In glasshouse sap and graft inoculations with PSbMV to genotypes not found infected in the field and 2 additional lupin species, no virus was detected in any of the 9 lupin species or in 5 field pea genotypes tested. Thus, the lupins all appeared to be non-hosts and the 5 field pea genotypes had resistance to the 2 PSbMV isolates used to inoculate them. All 14 genotypes of faba bean (Vicia faba) evaluated in the field were ranked highly susceptible, while 12 out of 16 lentil (Lens culinaris) genotypes were ranked as highly susceptible and 4 as susceptible. Chickpea (Cicer arietinum) genotypes were moderately resistant (50) or susceptible (7). Once infected, plant sensitivities (symptom severities) ranged from low in some field pea and most lentil genotypes to high in most faba bean genotypes. Chickpea genotypes all were ranked as moderately sensitive. Seed lots harvested from PSbMV-infected plants of field pea, faba bean, and chickpea all showed severe seed quality defects, but lentil was usually less affected. The predominant seed symptoms were necrotic rings and line markings on the seed coat, malformation, reduced size, and splitting. Kabuli chickpea types also showed darkening of the seed coat. Seed transmission of PSbMV was detected in faba bean (0.2%) and field pea (5–30%). When PSbMV infection foci were introduced into plots of lentil cv. Nugget, the virus spread to the lentil plants and decreased shoot dry weight by 23%, seed yield by 96%, and individual seed weight by 58%. Seed transmission of PSbMV (6%) was detected in seed from the infected lentil plants. In a survey for possible viral seed symptoms, all seed lots of kabuli chickpea (5) and field pea (70), and 10 of 18 of faba bean were affected, but none of the 23 of lentil. When seedlings from 16 faba bean and 7 field pea seed lots were tested for 3 viruses, neither Broad bean stain virus nor Broad bean true mosaic virus was detected, but PSbMV was found in 5 field pea seed lots at incidences of <1–14%. PSbMV was detected in commercial field pea seed stocks of cvv. Kaspa (33) and Parafield (12) at incidences of 0.5–47% and 0.3–30%, respectively. The implications of these findings in terms of genotype susceptiblility and sensitivity to PSbMV infection and their importance for the management of PSbMV in legume crops are discussed.


1978 ◽  
Vol 58 (4) ◽  
pp. 1073-1077 ◽  
Author(s):  
ARTHUR W. CHIKO ◽  
R. C. ZIMMER

Field plots of Century and Trapper, two cultivars of field pea (Pisum sativum L.) commonly grown in Manitoba, were mechanically inoculated with pea seed-borne mosaic virus (PSbMV) when plants were at the 6-, 8- or 13-node stages. Growth stage at time of inoculation did not significantly affect seed yields or levels of virus transmission through seed of either cultivar. Average yields of plots inoculated at all three stages were reduced 8 and 10% in Trapper and Century, respectively. In both cultivars, yield reductions were attributable mainly to reductions in seed weight. Transmission of PSbMV through seed from inoculated plots of Century and Trapper averaged 0.5 and 5.8%, respectively. In both cultivars, cracked seed coats were most prevalent in seeds from plots inoculated at the two youngest stages of growth. The preceding yield loss values are probably lower than those actually attributable to PSbMV infection, since the virus infected a substantial proportion of control plants (presumably as a result of aphid transmission) and did not infect all inoculated plants. Consequently, an equation was derived for estimating the average yield loss of infected plants. According to this equation, PSbMV infection reduced yield by 11% in Trapper and 36% in Century.


Plant Disease ◽  
2021 ◽  
Author(s):  
Amanda L Beck-Okins ◽  
Luis E. del Rio Mendoza ◽  
Mary Eileen Burrows ◽  
Kristin Simons ◽  
Julie Sherman Pasche

Pea seed-borne mosaic virus (PSbMV), a non-persistently aphid-transmitted potyvirus, has been reported in field pea (Pisum sativum L.) growing regions worldwide. In 2014, PSbMV was first identified in field peas in North Dakota. Susceptibility and yield losses attributed to PSbMV infection are influenced by viral pathotype and host genotype. Isolate ND14-1, recovered from North Dakota infected seed and identified as pathotype 4 (P4), was mechanically inoculated onto 20 field pea cultivars under greenhouse conditions. PSbMV susceptibility, number of seeds and pods per plant, yield, symptom expression, and PSbMV seed transmission rates were assessed by cultivar. A risk assessment was developed based on cultivar susceptibility, yield reduction, and PSbMV seed transmission. Risk factors were weighted based on perceived importance to commercial field pea producers. Three cultivars were classified as low risk, seven cultivars were classified as intermediate risk and ten cultivars were classified as high risk. Two of the low risk cultivars, Aragorn and Cruiser, were confirmed to be resistant to this isolate of PSbMV. Cultivar Arcadia was susceptible to PSbMV infection with mild expression of symptoms, but classified as low risk based on a low seed transmission rate and diminished yield losses. This risk assessment could prove a useful tool for growers in field pea cultivar selection where PSbMV is prevalent.


Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 953-958 ◽  
Author(s):  
B. S. Congdon ◽  
B. A. Coutts ◽  
M. Renton ◽  
R. A. C. Jones

Pea seed-borne mosaic virus (PSbMV) stability in sap and its contact transmission between field pea plants were investigated in glasshouse experiments. When infective leaf sap was kept at room temperature and inoculated to plants in the absence of abrasive, it was still highly infective after 6 h and low levels of infectivity remained after 30 h. PSbMV was transmitted from infected to healthy plants by direct contact when leaves were rubbed against each other. It was also transmitted when intertwining healthy and PSbMV-infected plants were blown by a fan to simulate wind. When air was blown on plants kept at 14 to 20°C, contact transmission of PSbMV occurred consistently and the extent of transmission was enhanced when plants were dusted with diatomaceous earth prior to blowing. In contrast, when plants were kept at 20 to 30°C, blowing rarely resulted in transmission. No passive contact transmission occurred when healthy and infected plants were allowed to intertwine together. This study demonstrates that PSbMV has the potential to be transmitted by contact when wind-mediated wounding occurs in the field. This may play an important role in the epidemiology of the virus in field pea crops, especially in situations where contact transmission expands initial crop infection foci before aphid arrival.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 929-940 ◽  
Author(s):  
B. S. Congdon ◽  
B. A. Coutts ◽  
M. Renton ◽  
R. A. C. Jones

Drivers of Pea seed-borne mosaic virus (PSbMV) epidemics in rainfed field pea crops were examined under autumn to spring growing conditions in a Mediterranean-type environment. To collect aphid occurrence and PSbMV epidemic data under a diverse range of conditions, 23 field pea data collection blocks were set up over a 6-year period (2010 to 2015) at five locations in the southwest Australian grain-growing region. PSbMV infection levels in seed sown (0.1 to 13%), time of sowing (22 May to 22 June), and cultivar (Kaspa or PBA Twilight) varied with location and year. Throughout each growing season, rainfall data were collected, leaf and seed samples were tested to monitor PSbMV incidence in the crop and transmission from harvested seed, and sticky traps were used to monitor flying aphid numbers. Winged migrant Acyrthosiphon kondoi, Lipaphis erysimi, Myzus persicae, and Rhopalosiphum padi were identified in green tile traps in 2014 and 2015. However, no aphid colonization of field pea plants ever occurred in the blocks. The deductions made from collection block data illustrated how the magnitude of PSbMV spread prior to flowering is determined by two primary epidemic drivers: (i) PSbMV infection incidence in the seed sown, which defines the magnitude of virus inoculum source for within-crop spread by aphids, and (ii) presowing rainfall that promotes background vegetation growth which, in turn, drives early-season aphid populations and the time of first arrival of their winged migrants to field pea crops. Likely secondary epidemic drivers included wind-mediated PSbMV plant-to-plant contact transmission and time of sowing. PSbMV incidence at flowering time strongly influenced transmission rate from harvested seed to seedlings. The data collected are well suited for development and validation of a forecasting model that informs a Decision Support System for PSbMV control in field pea crops.


2016 ◽  
Vol 148 (3) ◽  
pp. 733-737 ◽  
Author(s):  
Benjamin S. Congdon ◽  
B. A. Coutts ◽  
M. Renton ◽  
J. A. G. van Leur ◽  
R. A. C. Jones

2018 ◽  
Author(s):  
C. Coy ◽  
A.V. Shuravilin ◽  
O.A. Zakharova

Приведены результаты исследований по изучению влияния промышленной технологии возделывания картофеля на развитие, урожайность и качество продукции. Выявлена положительная реакция растений на подкормку K2SO4 в период посадки. Корреляционно-регрессионный анализ урожайности и качества клубней выявил высокую степень достоверности результатов опыта. Содержание нитратов и тяжелых металлов в клубнях было ниже допустимых величин.The results of studies on the impact of industrial technology of potato cultivation on growth, yield and quality of products. There was a positive response of plants to fertilizer K2SO4 in the period of planting. Correlation and regression analysis of yield and quality of tubers revealed a high degree of reliability of the results of experience. The contents of nitrates and heavy metals in tubers was below the permissible values.


Sign in / Sign up

Export Citation Format

Share Document