scholarly journals Increased Difficulties to Control Late Blight in Tunisia Are Caused by a Genetically Diverse Phytophthora infestans Population Next to the Clonal Lineage NA-01

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 898-908 ◽  
Author(s):  
Kalthoum Harbaoui ◽  
Walid Hamada ◽  
Ying Li ◽  
Vivianne G. A. A. Vleeshouwers ◽  
Theo van der Lee

In Tunisia, late blight caused by Phytophthora infestans is a serious threat to potato and tomato. The Mediterranean weather conditions can be conducive to infection in all seasons and the host crops, tomato and potato, are grown year round. Potato is planted and harvested in two to four overlapping intervals from August to June and tomato is grown both in open fields and in greenhouses. The consequences of these agricultural practices and the massive import of seed potato on the genetic variation of P. infestans are largely unknown. We conducted a survey in which 165 P. infestans isolates, collected from five subregions in Tunisia between 2006 and 2008, on which we studied genotypic diversity through nuclear (simple-sequence repeat [SSR]) markers and combined this with a previous study on their mitochondrial haplotypes (mtDNA). The phylogenetic analysis revealed the presence of a major clonal lineage (NA-01, A1 mating type, mitochondrial haplotype Ia). Isolates belonging to this clonal lineage were found in all regions and showed a relatively simple virulence pattern on a potato differential set carrying different Solanum demissum resistance genes. Apart from isolates belonging to this NA-01 clonal lineage, a group of isolates was found that showed a high genetic diversity, comprising both mating types and a more complex race structure that was found in the regions where late blight on potato was more difficult to control. The population on potato and tomato seems to be under different selection pressures. Isolates collected from tomato showed a low genetic diversity even though potato isolates collected simultaneously from the same location showed a high genetic diversity. Based on the SSR profile comparison, we could demonstrate that the four major clonal lineages found in the Netherlands and also in other European countries could not be found in Tunisia. Despite the massive import of potato seed from Europe, the P. infestans population in Tunisia was found to be clearly distinct.

Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 435-435 ◽  
Author(s):  
K. L. Deahl ◽  
R. Jones ◽  
L. A. Wanner ◽  
A. Plant

The area bordering three 110-ha (270-acre) fields of blighted potatoes (Solanum tuberosum L.) in three northeastern Maine locations was surveyed during the summer of 2004 for the occurrence of late blight on cultivated and noncultivated host plants. Special attention was directed to solanaceous weed species. Hundreds of Solanum sarrachoides Sendt. ex. Mart. (hairy nightshade) plants with numerous leaf lesions and moderate defoliation were seen. The frequency of blighted hairy nightshade approximated the frequency of late blight in the adjoining potato fields. Lesions typically contained extensive, white, superficial mycelia colonizing the abaxial and adaxial leaf surfaces. Samples placed in a moist chamber produced lemon-shaped sporangia. On the basis of morphological characteristics, the pathogen was tentatively identified as Phytophthora infestans (Mont.) de Bary. Isolates were obtained by surface-disinfecting leaf sections collected from two locations for 2 to 3 min in 0.5% NaOCl and placing the sections on rye grain medium amended with antibiotics (100 ppm each of penicillin G, pimaricin, and polymyxin). P. infestans was confirmed after reisolating onto rye-lima bean medium. Pathogenicity was tested on detached potato, tomato, and hairy nightshade leaves; the undersides of all leaflets from replicate plants were inoculated with droplets of swimming zoospores (≥500 zoospores per droplet), the leaves were kept at 17°C and 100% humidity, and the extent of sporulation was evaluated after 4, 6, and 7 days. With eight isolates obtained from S. sarrachoides, Koch's postulates were completed on potato and hairy nightshade. Radial growth responses of these strains on rye grain agar amended with 1, 10, or 100 μg per ml of metalaxyl (Ridomil 2E) yielded 50% effective dose values greater than 100 μg per ml, since percentage growth at the highest fungicide concentration exceeded 50% of the no metalaxyl control. These resistance levels are typical of the metalaxyl-insensitive strains of P. infestans isolated from potatoes in this area in recent years, which were previously found to correlate with metalaxyl resistance in bioassays using potato tissues (1). Eight single-sporangial isolates were homozygous for glucose-6-phosphate isomerase and peptidase (Gpi 100/111/122, Pep 100/100). All eight were A2-mating type and mitochondrial haplotype Ia, characteristics common to the US-8 clonal lineage of P. infestans from potato (2), which may infect a wider host range than the old US-1 clonal lineage. When evaluated on differential hosts, three isolates were tomato race PH-1 and complex potato race R 0,1,2,3,4,9,11. DNA fingerprint analysis with probe RG57 further established that the eight hairy nightshade isolates were identical to each other and to local P. infestans isolates from potato. To our knowledge, this is the first report of infection of S. sarrachoides by P. infestans in Maine. The pathogen was previously isolated from this host during field surveys in southern California in the 1980s in connection with late blight of tomato (4). Hairy nightshade has been shown to be a host for US-1, US-8, and US-11 isolates of P. infestans in a laboratory setting (3). The epidemiological significance of S. sarrachoides as an alternative or overwintering host of P. infestans is currently being assessed. References: (1) K. L. Deahl et al. Am. Potato J. 70:779, 1993. (2) S. B. Goodwin et al. Phytopathology 88:939, 1998. (3) H. W. Platt. Can. J. Plant Pathol. 21:301, 1999. (4) V. G. Vartanian and R. M. Endo Plant Dis. 69:516, 1985.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 152-152 ◽  
Author(s):  
A. J. Gevens ◽  
A. C. Seidl

Potato (Solanum tuberosum) crops are grown on over 25,090 ha in Wisconsin annually. Late blight, caused by Phytophthora infestans (Mont.) deBary, is a potentially devastating disease that affects tomato and potato crops in Wisconsin every few years when inoculum is introduced and weather conditions favor disease. Incidence and severity of late blight are highly variable in these few years due to differences in pathogen clonal lineages, their timing and means of introduction, and weather conditions. Prevention of this disease through prophylactic fungicide application can cost producers millions of dollars annually in additional chemical, fuel, and labor expenses. Populations of P. infestans in the U.S. have recently undergone significant genetic change, resulting in isolates with unique clonal lineages and epidemiological characteristics (1). In 2010, late blight epidemics were of low severity in discrete portions of a few fields and were seen exclusively on potato in two counties of central Wisconsin. Symptoms included water-soaked to dark brown circular lesions with pale green haloes accompanied by white fuzzy pathogen sporulation typically on leaf undersides in high humidity conditions. Infected plants were collected by professional crop consultants and submitted to the authors at the University of Wisconsin Vegetable Pathology Laboratory in Madison, Wisconsin. Eight isolates of P. infestans were generated from individual leaf samples, representing separate fields, by removing sporangia from sporulating lesions and placing onto Rye A agar amended with rifampicin and ampicillin. Axenic, single zoospore-derived cultures of isolates were generated from parent cultures and maintained on Rye A agar for further characterization. Mycelium was coenocytic with hyphal diameter of 5 to 8 μm (n = 50). Sporangia were limoniform to ovoid, semi- to fully papillate, caducous, had short pedicels, and were 36.22 × 19.11 μm (height × width; n = 50). The average length-width ratio was 1.91. Allozyme banding patterns at the glucose-6-phosphate isomerase (Gpi) locus indicated a 100/100/111 profile, consistent with the US-24 clonal lineage (3,4). Mating type assays confirmed the isolates to be A1 and intermediate insensitivity to mefenoxam was observed in vitro (4). Genomic DNA was extracted with a phenol:chloroform:isoamyl alcohol solution and restriction fragment length polymorphism (RFLP) analysis was performed using the RG-57 probe on a representative isolate and resulted in banding patterns consistent with US-24 (2,3). Clonal lineages of P. infestans documented in Wisconsin in previous epidemics included US-8 in the mid-1990s and US-1 in the 1970s. The US-24 (A1) clonal lineage was very widespread in the U.S. in 2010 and its presence in Wisconsin in the same year as identification of US-22 (A2) posed great concern for potential sexual recombination, oospore production, and soil persistence. Fortunately, the opposite mating types were separated spatiotemporally. To the best of our knowledge, this is the first report of the P. infestans clonal lineage US-24 causing late blight on potato in Wisconsin. References: (1) K. Deahl. (Abstr.) Phytopathology 100:S161, 2010. (2) S. B. Goodwin et al. Curr. Genet. 22:107, 1992. (3) Hu et al. Plant Dis. 96:1323, 2012. (4) A. C. Seidl and A. J. Gevens. (Abstr.) Phytopathology 101:S162, 2011.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 839-839 ◽  
Author(s):  
A. J. Gevens ◽  
A. C. Seidl

Tomato (Solanum lycopersicum) and potato (S. tuberosum) crops are grown on over 67,000 acres (27,114 ha) in Wisconsin annually. Late blight, caused by Phytophthora infestans (Mont.) deBary, is a potentially devastating disease that affects tomato and potato crops in Wisconsin every few years when inoculum is introduced and weather conditions favor disease. Incidence and severity of late blight are highly variable in these few years due to differences in pathogen clonal lineages, their timing and means of introduction, and weather conditions. Prevention of this disease through preventative application of fungicides can cost producers millions of dollars per year in additional chemical, fuel, and labor expenses. In 2009, late blight caused by P. infestans clonal lineage US-23 was observed on potato very late in the season in Vernon County, southwestern Wisconsin, in very low incidence and severity. In 2010, US-23 again appeared but on tomato in two southeastern Wisconsin counties, Waukesha and Ozaukee, again in low incidence and severity. Clonal lineages of P. infestans documented in Wisconsin in previous epidemics included US-8 in the mid-1990s and US-1 in the 1970s. Populations of P. infestans in the United States have recently undergone significant genetic change, resulting in isolates with unique clonal lineages and epidemiological characteristics (1). Foliar symptoms included water-soaked to dark brown circular lesions with pale green haloes accompanied by white pathogen sporulation. On tomato fruit, lesions were firm, sunken, and brown. Isolates of P. infestans were generated from field-infected tomato and potato foliar and fruit tissues collected by the authors and professional crop consultants. In initial pathogen confirmation analysis in 2009, three isolates of P. infestans were generated from one potato plant exhibiting multiple lesions from one of eight fields tested by placing infected leaf excisions onto Rye A agar amended with rifampicin and ampicillin. Axenic, single zoospore-derived cultures of isolates were generated from parent cultures and maintained on Rye A agar for further characterization. In 2010, three US-23 isolates were recovered from three locations (two counties), out of 20 fields tested. Mycelium was coenocytic with hyphal diameter of 5 to 8 μm (n = 50). Sporangia were limoniform or ovoid, semi to fully papillate, caducous, had short pedicels, and were 26.16 μm high × 18.17 μm wide (n = 50). The average length/width ratio was 1.42. Allozyme banding patterns at the glucose-6-phosphate isomerase (Gpi) locus indicated a 100/100 profile, consistent with the US-23 clonal lineage (3) Mating type assays confirmed the isolates to be A1 and in vitro intermediate mefenoxam sensitivity was observed (4). Genomic DNA was extracted with a phenol/chloroform/isoamyl alcohol solution and RFLP analysis was performed using the RG-57 probe on a representative isolate and resulted in banding patterns consistent with US-23 (2,3). The P. infestans clonal lineage US-23 was present in epidemics in 2009 and 2010 in the United States. Disease symptoms associated with US-23 were observed exclusively on potato in 2009 and on tomato in 2010 in Wisconsin. To our knowledge, this is the first report of P. infestans clonal lineage US-23 causing late blight on tomato and potato in Wisconsin and represents a change in the composition of the pathogen population from previous epidemic years. References: (1) K. Deahl. (Abstr.) Phytopathology 100:S161, 2010. (2) S. B. Goodwin et al. Curr. Genet. 22:107, 1992. (3) Hu et al. Plant Dis. 96:1323, 2012. (4) A. C. Seidl and A. J. Gevens. (Abstr.) Phytopathology 101(suppl.):S162, 2011.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 935-942 ◽  
Author(s):  
Toky Rakotonindraina ◽  
Jean-Éric Chauvin ◽  
Roland Pellé ◽  
Robert Faivre ◽  
Catherine Chatot ◽  
...  

The Shtienberg model for predicting yield loss caused by Phytophthora infestans in potato was developed and parameterized in the 1990s in North America. The predictive quality of this model was evaluated in France for a wide range of epidemics under different soil and weather conditions and on cultivars different than those used to estimate its parameters. A field experiment was carried out in 2006, 2007, 2008, and 2009 in Brittany, western France to assess late blight severity and yield losses. The dynamics of late blight were monitored on eight cultivars with varying types and levels of resistance. The model correctly predicted relative yield losses (efficiency = 0.80, root mean square error of prediction = 13.25%, and bias = –0.36%) as a function of weather and the observed disease dynamics for a wide range of late blight epidemics. In addition to the evaluation of the predictive quality of the model, this article provides a dataset that describes the development of various late blight epidemics on potato as a function of weather conditions, fungicide regimes, and cultivar susceptibility. Following this evaluation, the Shtienberg model can be used with confidence in research and development programs to better manage potato late blight in France.


Author(s):  
Dissou Affolabi ◽  
N’Dira Sanoussi ◽  
Sergio Codo ◽  
Fréderic Sogbo ◽  
Prudence Wachinou ◽  
...  

Background. Molecular studies on tuberculosis (TB) are rare in low-resource countries like Benin, where data on molecular study on previously treated TB cases is unavailable.Materials and Methods. From January to December 2014, all smear- and culture-positive previously treated pulmonary TB patients from all TB clinics were systematically recruited. Drug susceptibility testing and spoligotyping were performed on all isolates.Results. Of the 100 patients recruited, 71 (71.0%) were relapse cases and 24 (24.0%) were failure cases, while 5 (5.0%) were default cases. Resistance rate to any first-line drug was 40.0%, while 12.0% of strains were multidrug-resistant (MDR) and no strain was extensively drug-resistant (XDR). A total of 40 distinct spoligotypes were found to be corresponding to a genotypic diversity of 40.0%. ST61 was the most predominant spoligotype with prevalence of 33.0%. In all, 31 single spoligotypes and nine clusters were observed with 2 to 33 strains per cluster giving a clustering rate of 69.0%. Euro-American (Lineage 4) was the most prevalent lineage (74.0%) and Lineage 2 was associated with resistance to streptomycin.Conclusion. This first insight into genetic diversity of previously treated pulmonary TB patients in Benin showed a relatively high genetic diversity ofMycobacterium tuberculosis.


2015 ◽  
Vol 105 (6) ◽  
pp. 771-777 ◽  
Author(s):  
Yuee Tian ◽  
Junliang Yin ◽  
Jieping Sun ◽  
Hongmei Ma ◽  
Yunfang Ma ◽  
...  

As the causal agent of late blight on potato, Phytophthora infestans is one of the most destructive plant pathogens worldwide and widely known as the Irish potato famine pathogen. Understanding the genetic structure of P. infestans populations is important both for breeding and deployment of resistant varieties and for development of disease control strategies. Here, we investigate the population genetic structure of P. infestans in a potato germplasm nursery in northwestern China. In total, 279 isolates were recovered from 63 potato varieties or lines in 2010 and 2011, and were genotyped by mitochondrial DNA haplotypes and a set of nine simple-sequence repeat markers. Selected isolates were further examined for virulence on a set of differential lines containing each resistance (R) gene (R1 to R11). The overall P. infestans population was characterized as having a low level of genetic diversity and resistance to metalaxyl, and containing a high percentage of individuals that virulent to all 11 R genes. Both A1 and A2 mating types as well as self-fertile P. infestans isolates were present but there was no evidence of sexual reproduction. The low level of genetic differentiation in P. infestans populations is probably due to the action of relatively high levels of migration as supported by analysis of molecular variance (P < 0.01). Migration and asexual reproduction were the predominant mechanisms influencing the P. infestans population structure in the germplasm nursery. Therefore, it is important to ensure the production of pathogen-free potato seed tubers to aid sustainable production of potato in northwestern China.


2018 ◽  
Author(s):  
Guohong Cai ◽  
Kevin Myers ◽  
William E. Fry ◽  
Bradley I. Hillman

AbstractPhytophthora infestansis the causal agent of potato and tomato late blight. In this study, we characterized a novel RNA virus, Phytophthora infestans RNA virus 2 (PiRV-2). The PiRV-2 genome is 11,170 nt and lacks a polyA tail. It contains a single large open reading frame (ORF) with short 5’- and 3’-untranslated regions. The ORF is predicted to encode a polyprotein of 3710 aa (calculated molecular weight 410.94 kDa). This virus lacks significant similarity to any other known viruses, even in the conserved RNA-dependent RNA polymerase region. Comparing isogenic strains with or without the virus demonstrated that the virus stimulated sporangia production inP. infestansand appeared to enhance its virulence. Transcriptome analysis revealed that it achieved sporulation stimulation likely through down-regulation of ammonium and amino acid intake inP. infestans. This virus was faithfully transmitted through asexual reproduction. Survey of PiRV-2 presence in aP. infestanscollection found it in most strains in the US-8 lineage, a very successful clonal lineage ofP. infestansin North America. We suggest that PiRV-2 may have contributed to its success, raising the intriguing possibility that a potentially hypervirulent virus may contribute to late blight epidemics.Author SummaryPotato late blight, the notorious plant disease behind the Irish Potato Famine, continues to pose a serious threat to potato and tomato production worldwide. While most studies on late blight epidemics focuses on pathogen virulence, host resistance, environmental factors and fungicide resistance, we present evidence in this study that a virus infecting the causal agent,Phytophthora infestans, may have played a role. We characterized a novel RNA virus, Phytophthora infestans RNA virus 2 (PiRV-2) and examined its effects on its host. By comparing identicalP. infestansstrains except with or without the virus, we found that PiRV-2 stimulated sporulation ofP. infestans(a critical factor in late blight epidemics) and increased its virulence. We also profiled gene expression in these strains and identified potential molecular mechanisms through which PiRV-2 asserted its sporulation stimulation effect. In a survey of PiRV-2 presence in aP. infestanscollection, we found PiRV-2 in most isolates of the US-8 clonal lineage, a very successfull ineage that dominated potato fields in North America for several decades. We suggest that PiRV-2 may have contributed to its success. Our findings raise the intriguing possibility that a potentially hypervirulent virus may contribute to late blight epidemics.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Paul RJ Birch ◽  
David EL Cooke

Large-scale DNA sequencing of samples of foliage collected in the 19th century from plants infected with late blight has shown that the potato famines of the 1840s were triggered by a single clonal lineage of Phytophthora infestans, called HERB-1, which persisted for at least 50 years.


2019 ◽  
Vol 109 (7) ◽  
pp. 1280-1292 ◽  
Author(s):  
Noel L. Knight ◽  
Niloofar Vaghefi ◽  
Julie R. Kikkert ◽  
Melvin D. Bolton ◽  
Gary A. Secor ◽  
...  

Cercospora leaf spot, caused by Cercospora beticola, is a highly destructive disease of Beta vulgaris subsp. vulgaris worldwide. C. beticola populations are usually characterized by high genetic diversity, but little is known of the relationships among populations from different production regions around the world. This information would be informative of population origin and potential pathways for pathogen movement. For the current study, the genetic diversity, differentiation, and relationships among 948 C. beticola isolates in 28 populations across eight geographic regions were investigated using 12 microsatellite markers. Genotypic diversity, as measured by Simpson’s complement index, ranged from 0.18 to 1.00, while pairwise index of differentiation values ranged from 0.02 to 0.42, with the greatest differentiation detected between two New York populations. In these populations, evidence for recent expansion was detected. Assessment of population structure identified two major clusters: the first associated with New York, and the second with Canada, Chile, Eurasia, Hawaii, Michigan, North Dakota, and one population from New York. Inferences of gene flow among these regions suggested that the source for one cluster likely is Eurasia, whereas the source for the other cluster is not known. These results suggest a shared origin of C. beticola populations across regions, except for part of New York, where population divergence has occurred. These findings support the hypothesis that dispersal of C. beticola occurs over long distances.


Plant Disease ◽  
2021 ◽  
Author(s):  
Weiya Xue ◽  
Kathleen G. Haynes ◽  
Xinshun Qu

Resistance to late blight, caused by Phytophthora infestans clonal lineage US-23, in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91 with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into 5 groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield and resistance to early blight, caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield tradeoff associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.


Sign in / Sign up

Export Citation Format

Share Document