Diagnostics of banana Blood disease

Plant Disease ◽  
2021 ◽  
Author(s):  
Vivian A Rincon-Florez ◽  
Jane D Ray ◽  
Lilia Costa Carvalhais ◽  
Cecilia A O'Dwyer ◽  
Siti Subandiyah ◽  
...  

Blood disease in bananas caused by Ralstonia syzygii subsp. celebesensis (Rsce) is a bacterial wilt disease that causes major yield losses of banana in Indonesia and peninsular Malaysia. The disease has significantly increased its geographic distribution in the last decade. Diagnostic methods are an important component of disease management in vegetatively propagated crops such as banana to constrain incursions of plant pathogens. Therefore, the objectives of this study were: i) to design and rigorously validate a novel banana Blood disease (BBD) real-time PCR assay with a high level of specificity and sensitivity of detection. ii) to validate published PCR based diagnostic methods targeting either the intergenic region in the megaplasmid (“121 assay” with primer set 121) or the phage tail protein coding sequence in the bacterial chromosome (“Kubota assay” and “BDB2400 assay” with primer set BDB2400). Assay validation included 339 samples (174 Blood disease bacterium, 51 bacteria associated with banana plants, 51 members of the Ralstonia solanacearum species complex and 63 samples from symptomatic and healthy plant material). Validation parameters were analytical specificity (inclusivity and exclusivity), selectivity, limit of detection, accuracy, and ruggedness. The “121 assay” and our newly developed “BBD real-time PCR assay” detected all Rsce strains with no cross specificity during validation. Two different PCR assays using the primer set BDB2400 lacked specificity and selectivity. This study reveals that our novel “BBD real-time PCR assay” and the conventional PCR “121 assay” are reliable methods for Blood disease diagnostics as they comply with all tested validation parameters.

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 130 ◽  
Author(s):  
Mi-Ju Kim ◽  
Seung-Man Suh ◽  
Sung-Yeon Kim ◽  
Pei Qin ◽  
Hong-Rae Kim ◽  
...  

In this study, a donkey-specific primer pair and probe were designed from mitochondrial cytochrome b gene for the detection of raw donkey meat and different processed meat mixtures. The PCR product size for donkey DNA was 99 bp, and primer specificity was verified using 20 animal species. The limit of detection (LOD) was examined by serially diluting donkey DNA. Using real-time PCR, 0.001 ng of donkey DNA could be detected. In addition, binary meat mixtures with various percentages of donkey meat (0.001%, 0.01%, 0.1%, 1%, 10%, and 100%) in beef were analyzed to determine the sensitivity of this real-time PCR assay. At least 0.001% of donkey meat was detected in raw, boiled, roasted, dried, grinded, fried, and autoclaved meat mixtures. The developed real-time PCR method showed sufficient specificity and sensitivity in identification of donkey meat and could be a useful tool for the identification of donkey meat in processed products.


2020 ◽  
Author(s):  
Erin P. Price ◽  
Valentina Soler Arango ◽  
Timothy J. Kidd ◽  
Tamieka A. Fraser ◽  
Thuy-Khanh Nguyen ◽  
...  

AbstractSeveral members of the Gram-negative environmental bacterial genus, Achromobacter, are associated with serious infections in immunocompromised individuals, of which Achromobacter xylosoxidans is the most common. Despite their pathogenic potential, comparatively little is understood about these intrinsically drug-resistant bacteria and their role in disease, leading to suboptimal diagnosis and management of Achromobacter infections. Here, we performed comparative genomics of 158 Achromobacter spp. genomes to robustly identify species boundaries, to reassign several incorrectly speciated taxa, and to identify genetic sequences specific for the Achromobacter genus and for A. xylosoxidans. Next, we developed a Black Hole Quencher probe-based duplex real-time PCR assay, Ac-Ax, for the rapid and simultaneous detection of Achromobacter spp. and A. xylosoxidans from both purified colonies and polymicrobial clinical specimens. Ac-Ax was tested on 119 isolates identified as Achromobacter spp. using phenotypic or genotypic methods. In comparison to these routine diagnostic methods, the duplex assay showed superior identification of Achromobacter spp. and A. xylosoxidans, with five Achromobacter isolates failing to amplify with Ac-Ax confirmed to be different genera according to 16S rRNA gene sequencing. Ac-Ax quantified both Achromobacter spp. and A. xylosoxidans down to ∼110 genome equivalents, and detected down to ∼12 and ∼1 genome equivalent/s, respectively. In silico analysis, and laboratory testing of 34 non-Achromobacter isolates and 38 adult CF sputa, confirmed duplex assay specificity and sensitivity. We demonstrate that the Ac-Ax duplex assay provides a robust, sensitive, and cost-effective method for the simultaneous detection of all Achromobacter spp. and A. xylosoxidans, and will facilitate the rapid and accurate diagnosis of this important group of pathogens.


2018 ◽  
Vol 56 (7) ◽  
pp. 1133-1139 ◽  
Author(s):  
Hanah Kim ◽  
Mina Hur ◽  
Eunsin Bae ◽  
Kyung-A Lee ◽  
Woo-In Lee

Abstract Background: Hepatitis B virus (HBV) nucleic acid amplification testing (NAAT) is important for the diagnosis and management of HBV infection. We evaluated the analytical performance of the cobas HBV NAAT (Roche Diagnostics GmbH, Mannheim, Germany) on the cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test (CAP/CTM HBV). Methods: Precision was evaluated using three levels of cobas HBV/HCV/HIV-1 Control Kit, and linearity was evaluated across the anticipated measuring range (10.0–1.0×109 IU/mL) at seven levels using clinical samples. Detection capability, including limit of blank (LOB), limit of detection (LOD) and limit of quantitation (LOQ), was verified using the 4th WHO International Standard for HBV DNA for NAT (NIBSC code: 10/266). Correlation between the two systems was compared using 205 clinical samples (102 sera and 103 EDTA plasma). Results: Repeatability and total imprecision (coefficient of variation) ranged from 0.5% to 3.8% and from 0.5% to 3.5%, respectively. Linearity (coefficient of determination, R2) was 0.999. LOB, LOD and LOQ were all acceptable within the observed proportion rate (85%). Correlation was very high between the two systems in both serum and plasma samples (correlation coefficient [r]=0.995). Conclusions: The new cobas HBV real-time PCR assay on the cobas 4800 System showed reliable analytical performances.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Nawal El Houmami ◽  
Guillaume André Durand ◽  
Janek Bzdrenga ◽  
Anne Darmon ◽  
Philippe Minodier ◽  
...  

ABSTRACTKingella kingaeis a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting thegroELgene and the RTX locus ofK. kingae. However, recent studies showed that real-time PCR (RT-PCR) assays targeting theKingellasp. RTX locus that are currently available for the diagnosis ofK. kingaeinfection lack specificity because they could not distinguish betweenK. kingaeand the recently describedKingella negevensisspecies. Furthermore,in silicoanalysis of thegroELgene from a large collection of 45K. kingaestrains showed that primers and probes fromK. kingaegroEL-based RT-PCR assays display a few mismatches withK. kingae groELvariations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative togroEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, aK. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of theK. kingae mdhgene from 20 distinct sequence types ofK. kingae. This novelK. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnoseK. kingaeinfections and carriage in 104 clinical specimens from children between 7 months and 7 years old.


2019 ◽  
Vol 58 (6) ◽  
pp. 789-796 ◽  
Author(s):  
J Fortún ◽  
M J Buitrago ◽  
F Gioia ◽  
E Gómez-Gª de la Pedrosa ◽  
M E Alvarez ◽  
...  

Abstract Multiplex quantitative real-time PCR (MRT-PCR) using blood can improve the diagnosis of intra-abdominal candidiasis (IAC). We prospectively studied 39 patients with suspected IAC in the absence of previous antifungal therapy. Blood cultures, MRT-PCR, and β-D-glucan (BDG) in serum were performed in all patients. IAC was defined according to the 2013 European Consensus criteria. For MRT-PCR, the probes targeted the ITS1 or ITS2 regions of ribosomal DNA. Candidaemia was confirmed only in four patients (10%), and IAC criteria were present in 17 patients (43.6%). The sensitivity of MRT-PCR was 25% but increased to 63.6% (P = .06) in plasma obtained prior to volume overload and transfusion; specificity was above 85% in all cases. BDG performance was improved using a cutoff > 260 pg/ml, and improvement was not observed in samples obtained before transfusion. In this cohort of high risk of IAC and low rate of bloodstream infection, the performance of non-culture-based methods (MRT-PCR or BDG) was moderate but may be a complementary tool given the limitations of diagnostic methods available in clinical practice. Volume overload requirements, in combination with other factors, decrease the accuracy of MRT-PCR in patients with IAC.


2009 ◽  
Vol 75 (6) ◽  
pp. 1614-1620 ◽  
Author(s):  
Laurence Garnier ◽  
Jean-Christophe Gaudin ◽  
Paul Bensadoun ◽  
Isabelle Rebillat ◽  
Yannick Morel

ABSTRACT Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant “simulant” microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per μl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 332
Author(s):  
Jasmin Wrage ◽  
Oxana Kleyner ◽  
Sascha Rohn ◽  
Jürgen Kuballa

So far, only a few cases of immunoglobulin E (IgE)-mediated coconut allergies have been described in the literature. Due to a growing consumption of coconut-containing foods in occidental countries, the number of coconut allergies may also increase. As there is no causative immunotherapy in clinical routine, appropriate food labelling is particularly important, also with regard to cross-contamination, to prevent serious health consequences. The purpose of this study was to develop a DNA-based detection method for coconut (Cocos nucifera). Initially, three sets of coconut-specific primers were designed and tested. A TaqMan™ probe was then developed to identify and quantify coconut by real-time PCR assay. With 27 other plant and animal species, the specificity of the primer/probe system was tested and cross reactivity was excluded. In a dilution series, a limit of detection of 1 pg/µL was determined. Thus, the developed real-time PCR assay is a suitable method to detect coconut in food.


Plant Disease ◽  
2021 ◽  
Author(s):  
Karthikeyan Dharmaraj ◽  
Alice Merrall ◽  
Julie A. Pattemore ◽  
Joanne Mackie ◽  
Brett J.R Alexander ◽  
...  

The genus Ceratocystis contains several significant plant pathogens, causing wilt and canker disease on a wide range of plants species. Currently, there are over 40 known species of Ceratocystis, some of which are becoming increasingly important in agricultural or natural ecosystems. The diagnostics for most Ceratocystis species currently relies on time consuming and labour-intensive culturing approaches. To provide more time efficient and sensitive molecular diagnostic tools for Ceratocystis, a generic Taq-Man real-time PCR assay was developed using the ITS gene. This novel two-probe Taq-man assay amplified DNA from all tested Ceratocystis species. Some non-specific amplification of a few species from closely related genera was observed under certain conditions; however, these false positive detections could be ruled out using the additional PCR primers developed for further sequence based identification of the detected species. The assay was highly sensitive as it detected 0.2 pg/µl of Ceratocystis DNA in water as well as in host DNA matrix. Further validation with artificially inoculated fig stem tissue demonstrated that the assay was also able to effectively detect the pathogen in infected asymptomatic stem tissue. This newly developed real-time PCR assay has practical applications in biosecurity, conservation, and agriculture, enabling to detect Ceratocystis species directly from plant material, to facilitate more sensitive screening of imported plant germplasm, and allow rapid tracking of pathogens in case of disease outbreaks.


2006 ◽  
Vol 52 (2) ◽  
pp. 316-319 ◽  
Author(s):  
Andreas Nitsche ◽  
Mathias Büttner ◽  
Sonja Wilhelm ◽  
Georg Pauli ◽  
Hermann Meyer

Abstract Background: Detection of parapoxviruses is important in various animals as well as in humans as zoonotic infections. Reliable detection of parapoxviruses is fundamental for the exclusion of other rash-causing illnesses, for both veterinarians and medical practitioners. To date, however, no real-time PCR assay for the detection of parapoxviruses has been reported. Methods: A minor groove binder–based quantitative real-time PCR assay targeting the B2L gene of parapoxviruses was developed on the ABI Prism and the LightCycler platforms. Results: The real-time PCR assay successfully amplified DNA fragments from a total of 41 parapoxvirus strains and isolates representing the species orf virus, bovine papular stomatitis virus, pseudocowpoxvirus, and sealpoxvirus. Probit analysis gave a limit of detection of 4.7 copies per assay (95% confidence interval, 3.7–6.8 copies per reaction). Scabs contain a sufficient amount of parapoxvirus DNA and can therefore be used for PCR without any DNA preparation step. No cross-reactivity to human, bovine, or sheep genomic DNA or other DNA viruses, including orthopoxviruses, molluscum contagiosum viruses, and yaba-like disease viruses, was observed. Conclusion: The presented assay is suitable for the detection of parapoxvirus infections in clinical material of human and animal origin.


Sign in / Sign up

Export Citation Format

Share Document