scholarly journals A New Strain of Bean Common Mosaic Virus From Lima Bean (Phaseolus lunatus): Biological and Molecular Characterization

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1220-1227
Author(s):  
Xue Feng ◽  
Gardenia E. Orellana ◽  
James C. Green ◽  
Michael J. Melzer ◽  
John S. Hu ◽  
...  

Lima bean (Phaseolus lunatus) is a popular cultivated legume vegetable grown in the United States for dry bean or canned bean production. In 2017, two symptomatic P. lunatus plants exhibiting mosaic, vein banding, and growth retardation were collected in a public garden in Honolulu, HI. Both samples contained bean common mosaic virus (BCMV), and the two BCMV isolates were subjected to biological characterization on a panel of 11 differential cultivars of common bean (P. vulgaris), and to molecular characterization through whole genome sequencing. Both samples contained nearly identical BCMV sequences, named BCMV-A1, which, in turn, were 93% identical to the peanut stripe virus strain of BCMV. BCMV-A1 induced an unusually severe systemic necrosis in cultivar ‘Dubbele Witte’, and pronounced necrotic or chlorotic reaction in inoculated leaves of five other bean differentials. BCMV-A1 was able to partially overcome resistance alleles bc-1 and bc-2 expressed singly in common bean, inducing no systemic symptoms. Phylogenetic analysis of the BCMV-A1 sequence, and distinct biological reactions in common bean differentials suggested that BCMV-A1 represented a new lima bean strain of BCMV. In 2017, two BCMV isolates were collected in Idaho from common bean, and based on partial genome sequences were found 99% identical to the BCMV-A1 sequence. The data suggest that the lima bean strain of BCMV may have a wider circulation, including common bean as a host. This new strain of BCMV may thus pose a significant threat to common bean production.

2018 ◽  
Vol 108 (8) ◽  
pp. 1011-1018 ◽  
Author(s):  
Xue Feng ◽  
Gardenia E. Orellana ◽  
James R. Myers ◽  
Alexander V. Karasev

Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long-distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-12, bc-2, bc-22, and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-12, bc-2, and bc-22 alleles and their combinations, while no BCMV replication was found in inoculated leaves of cultivar IVT7214 carrying the bc-u, bc-2, and bc-3 genes, except for isolate 1755a, which was capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV, VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-12, bc-2, and bc-22 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when the alleles of bc-1 and bc-2 genes were combined together.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 670-674 ◽  
Author(s):  
C. R. Davidson ◽  
T. A. Evans ◽  
R. P. Mulrooney ◽  
N. F. Gregory ◽  
R. B. Carroll ◽  
...  

Before 1995, race D of Phytophthora phaseoli, the causal agent of downy mildew on lima bean (Phaseolus lunatus), was the prevalent physiological race in the mid-Atlantic region of the United States. Since 1995, however, new physiological races of P. phaseoli have been responsible for downy mildew outbreaks in previously resistant cultivars in this region. Cultivar differential testing of 180 isolates of P. phaseoli collected between 1994 and 2005 from Delaware and the eastern shore of Maryland has confirmed the presence of two new physiological races. The detection of race E in 1995 and race F only 5 years later in 2000, plus the lack of resistant cultivars to manage the epiphytotics in lima bean, have led to millions of dollars of crop losses. Intra- and interspecific genetic variation of Phytophthora spp. and isolates were assessed using amplified fragment length polymorphism DNA fingerprinting. Primer groups EcoRI+AG and MseI+C distinguished P. phaseoli and P. capsici from P. infestans but did not distinguish among different races of P. phaseoli.


1993 ◽  
Vol 73 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Shree P. Singh ◽  
Albeiro Molina ◽  
Carlos A. Urrea ◽  
J. Ariel Gutiérrez

Recently, interracial hybridization was used successfully in breeding common bean (Phaseolus vulgaris L.), but its use has not been adequately documented. Approximately 125 lines with medium-sized seed were selected in the first cycle, mostly from race Durango × race Mesoamerica (both from the Middle American domestication center) single- and multiple-cross populations, for disease resistance and race Durango characteristics. Fifteen of these improved lines, three race Durango control cultivars, and one control cultivar each from races Jalisco and Mesoamerica were evaluated for 3 yr (1989–1991) at three locations in Colombia. A randomized complete block design with three replications was used. Lines were developed using visual mass selection for seed yield and/or resistance to diseases in F2 and F3, followed by single plant harvests in F4 or F5 and seed increases in F6 or F7. Lines resistant to bean common mosaic virus and possessing other desirable traits were yield-tested in F7 or F8. All but two lines outyielded Alteño and Flor de Mayo, the highest yielding control cultivars from races Durango and Jalisco, respectively. Two lines also outyielded Carioca, the race Mesoamerica control cultivar. Improved lines tended to possess higher yield per day. All lines were resistant to bean common mosaic virus and most lines also carried a high level of resistance to anthracnose. Plant, seed, and maturity characteristics of most improved lines were similar to those of race Durango control cultivars. These results support the use of interracial hybridization in improving race Durango common bean. Key words: Common bean, Phaseolus vulgaris, race Durango, interracial populations, seed yield, disease resistance


2014 ◽  
Vol 104 (7) ◽  
pp. 786-793 ◽  
Author(s):  
Xue Feng ◽  
Alan R. Poplawsky ◽  
Olga V. Nikolaeva ◽  
James R. Myers ◽  
Alexander V. Karasev

Bean common mosaic virus (BCMV) exists as a complex of strains classified by reactions to resistance genes found in common bean (Phaseolus vulgaris); seven BCMV pathotypes have been distinguished thus far, numbered I to VII. Virus genetic determinants involved in pathogenicity interactions with resistance genes have not yet been identified. Here, we describe the characterization of two novel field isolates of BCMV that helped to narrow down these genetic determinants interacting with specific P. vulgaris resistance factors. Based on a biological characterization on common bean differentials, both isolates were classified as belonging to pathotype VII, similar to control isolate US10, and both isolates exhibited the B serotype. The whole genome was sequenced for both isolates and found to be 98 to 99% identical to the BCMV isolate RU1 (pathotype VI), and a single name was retained: BCMV RU1-OR. To identify a genetic determinant of BCMV linked to the BCMV pathotype VII, the whole genome was also sequenced for two control isolates, US10 and RU1-P. Inspection of the nucleotide sequences for BCMV RU1-OR and US10 (both pathotype VII) and three closely related sequences of BCMV (RU1-P, RU1-D, and RU1-W, all pathotype VI) revealed that RU1-OR originated through a series of recombination events between US10 and an as-yet-unidentified BCMV parental genome, resulting in changes in virus pathology. The data obtained suggest that a fragment of the RU1-OR genome between positions 723 and 1,961 nucleotides that is common to US10 and RU1-OR in the P1-HC-Pro region of the BCMV genome may be responsible for the ability to overcome resistance in bean conferred by the bc-22 gene. This is the first report of a virus genetic determinant responsible for overcoming a specific BCMV resistance gene in common bean.


Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 760-766 ◽  
Author(s):  
G. Pio-Ribeiro ◽  
S. S. Pappu ◽  
H. R. Pappu ◽  
G. P. Andrade ◽  
D. V. R. Reddy

Surveys of peanut crops in northeastern Brazil since 1995 showed the occurrence of a hitherto unreported virus disease. Characteristic leaf symptoms were ring spots and blotches. The virus was seed transmitted in peanut (1/610) and cowpea (47/796). Local and systemic symptoms were observed in cowpea (cv. TVu 3433) known to be susceptible to most Cowpea aphid-borne mosaic virus (CABMV) isolates. The virus was transmitted by aphids Toxoptera citricidus and Aphis gossypii. Using degenerate primers, the 3′ terminal region of the viral genome was cloned and sequenced. Sequence analyses of the coat protein and the 3′ untranslated region indicated that the potyvirus was most closely related to CABMV isolates from South Africa, Zimbabwe, and the United States. On the basis of genome analysis, the virus was identified as CABMV. The natural occurrence of CABMV on peanut has so far not been reported. The significance of this finding especially for germ plasm exchange is discussed.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 903 ◽  
Author(s):  
Marco H Bello ◽  
Samira M Moghaddam ◽  
Mark Massoudi ◽  
Phillip E McClean ◽  
Perry B Cregan ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 71-71
Author(s):  
S. L. Rideout ◽  
M. A. Hansen ◽  
N. F. Gregory ◽  
T. A. Evans

Delaware, the eastern shore of Maryland, and southern New Jersey have been the center of lima bean (Phaseolus lunatus L.) production in the eastern United States for nearly 50 years (1). Downy mildew has been the most important disease of lima bean in the humid eastern United States over that period. The causal agent of downy mildew, the oomycete pathogen Phytophthora phaseoli Thaxt., was first identified on lima bean in Connecticut in 1887 by Thaxter. Signs and symptoms of lima bean downy mildew include infection, necrosis and abscission of flowers, and shepherd's crooking of racemes, shoot tips, and petioles (1). Sporangia develop on shoot tips, petioles, pins (small pods), and pods in the field and on hypocotyls in-vitro. Since 2005, approximately 50% of the baby lima beans processed in the United States have been grown in Delaware and the eastern shore of Maryland. In 2008, commercial lima bean production began on the eastern shore of Virginia in Accomack County but no downy mildew was reported in that season. In 2009, approximately 1,825 ha in Accomack and Northampton counties were planted to baby lima bean. Weather conditions in 2009, including above average rainfall, were conducive for the development of downy mildew on the Delmarva Peninsula. Downy mildew was widespread in growers' fields in August and September in butter bean in southern New Jersey and baby lima bean in Sussex County, DE. In August 2009, a home gardener in Rappahannock, VA sent samples of infected lima bean pods from baby, Fordhook, and pole lima bean plants to the Virginia Tech Plant Disease Clinic in Blacksburg. On the basis of morphometric analysis, samples were determined microscopically to be infected by a Phytophthora sp. with rather uniform sporangia averaging 39 × 22 μm and short pedicels, diagnostic for P. phaseoli (1). On October 27, 2009, field scouts in Accomack County, VA identified two lima bean fields planted to cv. C-Elite-Select exhibiting moderate symptoms of downy mildew. Samples were brought to the Plant Diagnostic Clinic at the University of Delaware under USDA-APHIS permit and determined to be P. phaseoli based on morphometric analysis. Samples were inoculated onto a lima bean cultivar differential to determine pathogenicity to complete Koch's postulates and to determine their physiological race. Samples were inoculated onto lima bean cvs. 184-185 and C-Elite-Select, which are susceptible to race F and resistant to race E, Eastland and 8-78, which are susceptible to race E and resistant to race F, and Concentrated Fordhook, susceptible to all known races (1). Three pots containing five emerging seedlings each were inoculated with sporangia (approximately 103 per ml) prepared by soaking infected pods in 500 ml of sterile distilled water for 1 min with gentle agitation. Plants were placed in a Percival dew chamber with intermittent misting and set at 19. Infection and disease development were assessed daily and signs developed 7 days postinoculation in cvs. 184-85, C-Elite-Select, and Concentrated Fordhook, but not in Eastland and 8-78. Cultivar differential tests indicated that the isolates were P. phaseoli race F. Hypocotyls of infected plants were scraped, and isolations made on lima bean pod agar confirmed the presence of P. phaseoli. To our knowledge, this is the first time that downy mildew of lima bean has been reported in Virginia. Reference: (1) T.A. Evans et al. Plant Dis. 91:128, 2007.


2011 ◽  
Vol 46 (11) ◽  
pp. 1432-1438 ◽  
Author(s):  
José Albersio Araujo Lima ◽  
Ana Kelly Firmino da Silva ◽  
Maria do Livramento Aragão ◽  
Nádia Rutielly de Araújo Ferreira ◽  
Elizita Maria Teófilo

The objective of this work was to identify new sources of simple and multiple resistances to Cowpea severe mosaic virus (CPSMV), Cowpea aphid-borne mosaic virus (CABMV) and Cucumber mosaic virus (CMV) isolates in cowpea (Vigna unguiculata). Thirty-three genotypes from the germplasm bank of Universidade Federal do Ceará were tested as to their resistance to four CPSMV isolates, two CABMV isolates and one CMV isolate. Twenty-five days after the first virus inoculations, all inoculated plants, including the asymptomatic ones, were tested by serology. Genotypes were classified as: immune, plants without symptoms and negative serology; resistant, plants with mild mosaic and positive serology; susceptible, plants with mosaic and positive serology; and highly susceptible, plants with severe mosaic, other systemic symptoms, including systemic necrosis, and positive serology. Simple and multiple resistances to viruses were identified among the evaluated genotypes, but none of them showed multiple immunities to all isolates. Four genotypes showed immunity to all CPSMV isolates, two were immune to CABMV and two showed immunity to CMV. Eleven genotypes showed multiple resistances to two viruses, allowing for the development of new cultivars with more stable and broader resistance. Genotypes Purple Knuckle Hull-55, MNC-03-731C-21 and CNCx284-66E show resistance to CABMV, even when inoculated with CMV.


2017 ◽  
Vol 33 (1) ◽  
pp. 41
Author(s):  
M. M. Abarshi ◽  
A. L. Abubakar ◽  
A. Garba ◽  
S. B. Mada ◽  
A. B. Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document