Genetic diversity and potential inoculum sources of Fusarium species causing cankers in bareroot-propagated almond trees in California nurseries

Plant Disease ◽  
2021 ◽  
Author(s):  
Abigail Justine Stack ◽  
Stephen Mark Marek ◽  
Thomas Gordon ◽  
Richard M. Bostock

Previous research determined that Fusarium acuminatum and Fusarium avenaceum are important causal agents of a canker disease in bareroot-propagated fruit and nut trees in California that emerges during cold-storage or after transplanting. The disease largely disappeared after 2001, but it reemerged in 2011 in almond trees in at least one nursery. This motivated further study of the etiology and epidemiology of the disease by undertaking studies to determine distribution of the pathogens throughout almond nursery propagation systems and trace possible sources of inoculum. Research initiated in 2013 detected pathogenic Fusarium spp. throughout the almond propagation system, including in healthy trees, in soils, on wheat rotation crops, on equipment, and in the cold storage facility air. In addition to the two Fusarium spp. implicated previously, Fusarium brachygibbosum and a new Fusarium species, Fusarium californicum, were found to be pathogenic on almond trees. Multi-locus sequence typing and somatic compatibility testing confirmed that isolates within a species collected from different materials in the nursery were all highly genetically similar and likely of one clonal lineage. These findings affirm that equipment surfaces, wheat rotation crops, soil, cold storage facility air, and asymptomatic almond tree materials (i.e., rootstock cuttings, budwood, and scions) can potentially contribute inoculum to increase disease prevalence and severity.

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 772-779
Author(s):  
Abigail J. Stack ◽  
Meera Madra ◽  
Thomas R. Gordon ◽  
Richard M. Bostock

Loss of water that reduces the relative water content (RWC) of bark can occur during processing, cold storage, and planting of bare-root stone fruit trees. In California nurseries and newly planted orchards, this stress can predispose young almond trees (Prunus dulcis) to a canker disease caused primarily by Fusarium species. While reduced bark RWC contributes to disease development, anecdotal observations suggest a seasonal effect on host physiology may also influence disease severity. We evaluated the effect of season and the impact of drying and reduced RWC on susceptibility of almond branch segments excised from orchard trees (cv. Nonpareil) to Fusarium acuminatum, Fusarium avenaceum, Fusarium brachygibbosum, and Fusarium californicum sp. nov. With lesion size as the criterion, excised inoculated branch segments were most susceptible in spring, of intermediate susceptibility during winter dormancy, and least susceptible during summer and fall. Consistent with an earlier study, branches with RWC between 80 and 85% yielded lesions that were significantly larger than lesions from branches with bark that was above or below that range. However, the effect of reduced bark moisture on lesion size was only apparent in the spring. These results affirm the importance of avoiding conditions that diminish moisture status in bare-root almond trees in Fusarium canker disease management, especially during transport and planting operations in the spring, a period of high physiological vulnerability. California nurseries apply fungicides to bare-root trees prior to cold storage to reduce “mold” growth. Of eight fungicides currently registered for use on almond trees, fludioxonil (Scholar), fluopyram/trifloxystrobin (Luna Sensation), and fluxapyroxad/pyraclostrobin (Merivon) were most inhibitory to in vitro mycelial growth of F. acuminatum, F. avenaceum, and F. brachygibbosum. However, our almond branch disease assay did not demonstrate preventive or curative fungicide action against infections by F. acuminatum or F. avenaceum.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 259-270 ◽  
Author(s):  
Stephen M. Marek ◽  
Mohammad A. Yaghmour ◽  
Richard M. Bostock

The principal objective of this study was to determine the etiology of a canker disease in dormant stone fruit and apple tree seedlings maintained in refrigerated storage that has significantly impacted California fruit and nut tree nurseries. Signs and symptoms of the disease develop during storage or soon after planting, with subsequent decline and death of young trees. Isolations from both diseased and healthy almond and apple trees and Koch's postulates using stem segments of desiccation-stressed almond trees as hosts implicated Fusarium avenaceum and F. acuminatum as the primary causal agents. F. solani, Ilyonectria robusta, and Cylindrocarpon obtusiusculum were also capable of causing similar symptoms but were less frequently encountered in isolations of diseased tissue. Loss of bark turgidity in excised almond stem segments, as can occur in cold-stored seedlings, correlated with increased susceptibility to F. acuminatum, with maximum canker development occurring after relative bark turgidity dropped below a threshold of approximately 86%. Healthy almond trees, almond scion budwood, and a wheat cover crop used in fields where tree seedlings were grown and maintained until cold storage all possessed asymptomatic infections of F. acuminatum, F. avenaceum, and C. obtusiusculum as determined by activation following overnight freezing, cold storage, or desiccation.


2021 ◽  
Author(s):  
Eduardo de la Lastra ◽  
José I. Marín‐Guirao ◽  
Francisco J. López‐Moreno ◽  
Teresa Soriano ◽  
Miguel de Cara‐García ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 438
Author(s):  
Mary E. Ridout ◽  
Bruce Godfrey ◽  
George Newcombe

Fusarium species coexist as toxigenic, systemic pathogens in sweet corn seed production in southwestern Idaho, USA. We hypothesized that fungal antagonists of seedborne Fusarium would differentially alter production of Fusarium mycotoxins directly and/or systemically. We challenged the Fusarium complex by in vitro antagonism trials and in situ silk and seed inoculations with fungal antagonists. Fungal antagonists reduced growth and sporulation of Fusarium species in vitro from 40.5% to as much as 100%. Pichia membranifaciens and Penicillium griseolum reduced fumonisin production by F. verticillioides by 73% and 49%, respectively, while P. membranifaciens and a novel Penicillium sp. (WPT) reduced fumonisins by F. proliferatum 56% and 78%, respectively. In situ, pre-planting inoculation of seeds with Penicillium WPT systemically increased fumonisins in the resulting crop. Morchella snyderi applied to silks of an F1 cross systemically reduced deoxynivalenol by 47% in mature seeds of the F2. Antagonists failed to suppress Fusarium in mature kernels following silk inoculations, although the ratio of F. verticillioides to total Fusarium double with some inoculants. Fusarium mycotoxin concentrations in sweet corn seed change systemically, as well as locally, in response to the presence of fungal antagonists, although in Fusarium presence in situ was not changed.


2010 ◽  
Vol 16 (3) ◽  
pp. 266-276 ◽  
Author(s):  
G. Cano-Sancho ◽  
S. Marin ◽  
A.J. Ramos ◽  
V. Sanchis

Fusarium species are probably the most prevalent toxin-producing fungi of the northern temperate regions and are commonly found on cereals grown in the temperate regions of America, Europe and Asia. Among the toxins formed by Fusarium we find trichothecenes of the A-type or B-type, zearalenone, fumonisins or nivalenol. The current exposure assessment consists of the qualitative and/or quantitative evaluation based on the knowledge of the mycotoxin occurrence in the food and the dietary habits of the population. This process permits quantifying the mycotoxin dietary intake through deterministic or probabilistic methods. Although these methods are suitable to assess the exposure of populations to contaminants and to identify risk groups, they are not recommended to evaluate the individual exposition, due to a low accuracy and sensitivity. On the contrary, the use of biochemical indicators has been proposed as a suitable method to assess individual exposure to contaminants. In this work, several techniques to biomonitor the exposure to fumonisins, deoxynivalenol, zearalenone or T-2 toxin have been reviewed.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 560 ◽  
Author(s):  
Kateryna Davydenko ◽  
Justyna Nowakowska ◽  
Tomasz Kaluski ◽  
Magdalena Gawlak ◽  
Katarzyna Sadowska ◽  
...  

The fungal pathogen Fusarium circinatum is the causal agent of Pine Pitch Canker (PPC), a disease which seriously affects different species of pine in forests and nurseries worldwide. In Europe, the fungus affects pines in northern Spain and Portugal, and it has also been detected in France and Italy. Here, we report the findings of the first trial investigating the susceptibility of Polish provenances of Scots pine, Pinus sylvestris L., to infection by F. circinatum. In a greenhouse experiment, 16 Polish provenances of Scots pine were artificially inoculated with F. circinatum and with six other Fusarium species known to infect pine seedlings in nurseries. All pines proved highly susceptible to PPC and displayed different levels of susceptibility to the other Fusarium spp. tested. The findings obtained indicate the potentially strong threat of establishment of an invasive pathogen such as F. circinatum following unintentional introduction into Poland.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


Author(s):  
Veronica O. Vakhrusheva ◽  
◽  
Elena A. Vakhrusheva ◽  
Natalya V. Grinkrug ◽  
◽  
...  

1962 ◽  
Vol 8 (5) ◽  
pp. 621-628 ◽  
Author(s):  
W. A. Taber ◽  
B. B. Wiley

The antimicrobial activities of a branched, monoalkyl benzene sulphonate complex (ABS), the active component of a commercial liquid household detergent, and of the detergent have been investigated. Cultures of dermatophytes, Candida albicans, saprophytic phycomycetes, ascomycetes, fungi imperfecti, Gram-positive and Gram-negative bacteria were tested. Only the Fusarium species and the Gram-negative bacteria were not inhibited by a concentration of 0.1 ml of the detergent/50 ml medium. Microgram quantities of ABS inhibited the Gram-positive bacteria and the fungi except Fusarium spp. ABS was lethal in microgram quantities, the effect being detectable within 30 minutes. Inhibition of exogenous respiration of glucose by C. albicans began upon contact and was complete within 50 minutes. A linear and biodegradable ABS was more active than the branched form against C. albicans.


2019 ◽  
Vol 7 ◽  
pp. 2050313X1984196
Author(s):  
Hsin-Han Chen ◽  
Pin-Keng Shih

Fusarium species, a soil-borne fungi, causes disease in animals and humans, particularly in immunocompromized patients. A 62-year-old male presented with type II diabetes mellitus, diagnosed 4 years ago. He had a motorcycle accident-caused open tibiofibular fracture of the left lower extremity (Gustilo grade IIIb). With open reduction and internal fixation, an anterolateral thigh musculocutaneous flap was harvested for coverage of exposed bone and defect reconstruction. Partial failure of the flap occurred 9 days following reconstruction, and histological examination revealed Fusarium spp. After treatment with antifungal drugs and debridement, we performed a split-thickness skin graft. At 2-year follow-up, the flap was viable with adequate bone union. This is the first reported case of partial flap failure due to a Fusarium spp. infection. Possibility of fungal infections in patients with late-onset flap failure should be noted. Prompt diagnosis and treatment are needed to prevent repeated free-tissue transfer and/or devastating outcomes.


Sign in / Sign up

Export Citation Format

Share Document