scholarly journals First Report of Pilidium concavum Causing Tan-Brown Rot on Strawberry Fruit in Belgium

Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1029-1029 ◽  
Author(s):  
J. Debode ◽  
W. Van Hemelrijck ◽  
K. Heungens ◽  
M. Maes ◽  
P. Creemers

In April 2010, pink-orange spore masses that later turned brown were observed on 7 to 50% of the transplant lots during a routine screening of Belgian strawberry (Fragaria × ananassa, cv. Elsanta) for the latent presence of Colletotrichum acutatum using the petiole freeze method (4). These spore masses contained hyaline, canoe-shaped to allantoid conidia (mean size 7.5 × 1.8 μm), which is not consistent with C. acutatum spore morphology. Subsequently, a spore mass was transferred onto potato dextrose agar (PDA) and a gray-to-brown colony with whitish, aerial mycelium was produced, which is also not consistent with C. acutatum isolates. To identify the fungus, the ITS1-5.8S-ITS2 rDNA region was amplified by PCR and sequenced. The 485-bp region was 100% identical to that of Pilidium concavum specimen voucher BPI 1107275 (GenBank Accession No. AY487094). P. concavum (Desm.) Höhn. (synanamorph Hainesia lythri; teleomorph Discohainesia oenotherae) is a pathogen of strawberry causing tan-brown rot of fruit and is a common secondary invader of roots and dead strawberry plant parts (3). A recent strain of P. concavum from strawberry, isolate UPL 50, obtained from Brazil (L. Zambolim, Univ. Fed. de Viçosa, personal communication) showed similar colony, microscopic (mean spore size of 6.8 × 1.8 μm), and molecular (ITS sequence 98% identical to that of P. concavum specimen voucher BPI 1107275) features as the Belgian isolate. Pathogenicity tests were conducted on mature strawberry fruits by submerging 15 fruits per isolate for 3 min in a conidial suspension (2 × 106 conidia ml–1 of water) obtained from a 2-week-old colony on PDA. Controls were submerged in sterile distilled water. The inoculated fruits were incubated in a moist chamber at 25°C. Sunken, yellowish brown lesions with pink and later orange-brown spore masses were observed starting 3 days after inoculation on 88 and 94% of the fruit for the Brazilian and Belgian isolate, respectively. The control fruits remained healthy. The fungal isolates were reisolated from symptomatic fruits and their identity was confirmed based on morphological features. During a strawberry field survey in July 2010 in Sint-Truiden (Belgium), lesions typical of those described above were observed on eight strawberry fruits (cv. Elsanta). The fungus was isolated from the symptomatic tissue of two fruits and characterized as described above. Since P. concavum was latently present on strawberry transplants and caused disease on the fruits in the field, we conclude that P. concavum is a potential threat for Belgian strawberry production. Moreover, no strawberry cultivars with resistance to the pathogen have been reported. The disease has previously been reported on strawberry in South America and Poland (1,2), but to our knowledge, this is the first report of P. concavum on strawberry in Belgium. Although the spore and colony morphology of P. concavum is different from C. acutatum, the spore masses of P. concavum can easily be confused with the spore masses of C. acutatum when using the freeze method. This suggests the need for microscopic analysis of these spore masses during routine analyses. References: (1) L. Cedeno et al. Interciencia 26:113, 2001. (2) U. P. Lopes et al. New Dis. Rep. 21:7, 2010. (3) J. L. Maas. Compendium of Strawberry Diseases. The American Phytopathological Society St. Paul, MN, 1998. (4) J. C. Mertely and D. E. Legard. Plant Dis. 88:407, 2004.

Plant Disease ◽  
2002 ◽  
Vol 86 (8) ◽  
pp. 922-922 ◽  
Author(s):  
W. W. Turechek ◽  
C. Heidenreich ◽  
M. P. Pritts

Strawberry plants with red to black, sunken, fusoid lesions on runners and leaf petioles were found in several first-year plantings in grower's fields in western New York in 2000. Affected cultivars included Honeoye, Jewel, and Primetime. Sections of petiole were excised from lesion margins and plated on potato dextrose agar (PDA) amended with chloramphenicol, streptomycin sulfate, and tetracycline hydrochloride at 100 μg/ml. The fungus, Colletotrichum acutatum (J.H. Simmonds), was consistently isolated and identified based on conidia morphology and its growth rate in culture relative to reference cultures of C. acutatum, C. gloeosporoides, and C. fragariae (1,2). The average size of conidia produced on PDA was 15.2 × 5 μm. For each of six isolates, three plants each of six-week-old Honeoye and Kent were spray inoculated with a conidial suspension (106 conidia per ml), and petioles, leaves, and crowns were stabbed with a sterile pin following inoculation. After 14 days at 20 to 25°C, petioles and leaves on all inoculated plants developed lesions consistent with those seen in the field. The fungus was readily reisolated from leaf and petiole lesions. Subsequent inoculations on detached fruit under the same conditions yielded circular, sunken, dry lesions that produced a salmon-colored, slimy, spore mass typical of C. acutatum. This is the second report of strawberry anthracnose in the northeastern United States (3) and to our knowledge, the first report in New York. References: (1) J. A. García Muñoz et al. Mycologia 92:288, 2000. (2) P. S. Gunnel and W. D. Gubler. Mycologia 84:157, 1992. (3) J. A. LaMondia. Plant Dis. 75:1286, 1991.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1166-1166 ◽  
Author(s):  
A. Munda ◽  
M. Viršček Marn

Monilinia fructicola, the causal agent of brown rot, is a destructive fungal pathogen that affects mainly stone fruits (Prunoideae). It causes fruit rot, blossom wilt, twig blight, and canker formation and is common in North and South America, Australia, and New Zealand. M. fructicola is listed as a quarantine pathogen in the European Union and was absent from this region until 2001 when it was detected in France. In August 2009, mature peaches (Prunus persica cv. Royal Glory) with brown rot were found in a 5-year-old orchard in Goriška, western Slovenia. Symptoms included fruit lesions and mummified fruits. Lesions were brown, round, rapidly extending, and covered with abundant gray-to-buff conidial tufts. The pathogen was isolated in pure culture and identified based on morphological and molecular characters. Colonies on potato dextrose agar (PDA) incubated at 25°C in darkness had an average daily growth rate of 7.7 mm. They were initially colorless and later they were light gray with black stromatal plates and dense, hazel sporogenous mycelium. Colony margins were even. Sporulation was abundant and usually developed in distinct concentric zones. Limoniform conidia, produced in branched chains, measured 10.1 to 17.7 μm (mean = 12.1 μm) × 6.2 to 8.6 μm (mean = 7.3 μm) on PDA. Germinating conidia produced single germ tubes whose mean length ranged from 251 to 415 μm. Microconidia were abundant, globose, and 3 μm in diameter. Morphological characters resembled those described for M. fructicola (1). Morphological identification was confirmed by amplifying genomic DNA of isolates with M. fructicola species-specific primers (2–4). Sequence of the internal transcribed spacer (ITS) region (spanning ITS1 and ITS 2 plus 5.8 rDNA) of a representative isolate was generated using primers ITS1 and ITS4 and deposited in GenBank (Accession No. GU967379). BLAST analysis of the 516-bp PCR product revealed 100% identity with several sequences deposited for M. fructicola in NCBI GenBank. Pathogenicity was tested by inoculating five mature surface-sterilized peaches with 10 μl of a conidial suspension (104 conidia ml–1) obtained from one representative isolate. Sterile distilled water was used as a control. Peaches were wounded prior to inoculation. After 5 days of incubation at room temperature and 100% relative humidity, typical brown rot symptoms developed around the inoculation point, while controls showed no symptoms. M. fructicola was reisolated from lesion margins. Peach and nectarine orchards in a 5-km radius from the outbreak site were surveyed in September 2009 and M. fructicola was confirmed on mummified fruits from seven orchards. The pathogen was not detected in orchards from other regions of the country, where only the two endemic species M. laxa and M. fructigena were present. To our knowledge, this is the first report of M. fructicola associated with brown rot of stone fruits in Slovenia. References: (1) L. R. Batra. Page 106 in: World Species of Monilinia (Fungi): Their Ecology, Biosystematics and Control. J. Cramer, Berlin, 1991. (2) M.-J. Côté et al. Plant Dis. 88:1219, 2004. (3) K. J. D. Hughes et al. EPPO Bull. 30:507, 2000. (4) R. Ioos and P. Frey. Eur. J. Plant Pathol. 106:373, 2000.


Plant Disease ◽  
2022 ◽  
Author(s):  
Martina Sanna ◽  
Massimo Pugliese ◽  
Maria Lodovica GULLINO ◽  
Monica Mezzalama

Maize (Zea mays L.) is a cereal crop of great economic importance in Italy; production is currently of 60,602,320 t, covering 588,597 ha (ISTAT 2021). Trichoderma species are widespread filamentous fungi in soil, well known and studied as biological control agents (Vinale et al., 2008). Seeds of a yellow grain hybrid (class FAO 700, 132 days) were collected in September 2020 from an experimental field located in Carmagnola (TO, Italy: GPS: 44°53'11.0"N 7°40'60.0"E) and tested with blotter test (Warham et al., 1996) to assess their phytosanitary condition. Over the 400 seeds tested, more than 50% showed rotting and development of green mycelium typical of the genus Trichoderma. Due to the high and unexpected percentage of decaying kernels, ten colonies were identified by morphological and molecular methods. Single conidia colonies of one Trichoderma (T5.1) strain were cultured on Potato Dextrose Agar (PDA) for pathogenicity tests, and on PDA and Synthetic Nutrient-Poor Agar (SNA) for morphological and molecular identification. The colonies grown on PDA and SNA showed green, abundant, cottony, and radiating aerial mycelium, and yellow pigmentation on the reverse. Colony radius after 72 h at 30°C was of 60-65 mm on PDA and of 50-55 mm on SNA. The isolates produced one cell conidia 2.8 - 3.8 µm long and 2.1 - 3.6 µm wide (n=50) on SNA. Conidiophores and phialides were lageniform to ampulliform and measured 4.5 – 9.7 µm long and 1.6 – 3.6 µm wide (n=50); the base measure 1.5 – 2.9 µm wide and the supporting cell 1.4 – 2.8 µm wide (n=50). The identity of one single-conidia strain was confirmed by sequence comparison of the internal transcribed spacer (ITS), the translation elongation factor-1α (tef-1α), and RNA polymerase II subunit (rpb2) gene fragments (Oskiera et al., 2015). BLASTn searches of GenBank using ITS (OL691534) the partial tef-1α (OL743117) and rpb2 (OL743116) sequences of the representative isolate T5.1, revealed 100% identity for rpb2 to T. afroharzianum TRS835 (KP009149) and 100% identity for tef-1α to T. afroharzianum Z19 (KR911897). Pathogenicity tests were carried out by suspending conidia from a 14-days old culture on PDA in sterile H2O to 1×106 CFU/ml. Twenty-five seeds were sown in pots filled with a steamed mix of white peat and perlite, 80:20 v/v, and maintained at 23°C under a seasonal day/night light cycle. Twenty primary ears were inoculated, by injection into the silk channel, with 1 ml of a conidial suspension of strain T5.1 seven days after silk channel emergence (BBCH 65) (Pfordt et al., 2020). Ears were removed four weeks after inoculation and disease severity, reaching up to 75% of the kernels of the twenty cobs, was assessed visually according to the EPPO guidelines (EPPO, 2015). Five control cobs, inoculated with 1 ml of sterile distilled water were healthy. T. afroharzianum was reisolated from kernels showing a green mold developing on their surface and identified by resequencing of tef-1α gene. T. afroharzianum has been already reported on maize in Germany and France as causal agent of ear rot of maize (Pfordt et al. 2020). Although several species of Trichoderma are known to be beneficial microorganisms, our results support other findings that report Trichoderma spp. causing ear rot on maize in tropical and subtropical areas of the world (Munkvold and White, 2016). The potential production of mycotoxins and the losses that can be caused by the pathogen during post-harvest need to be explored. To our knowledge this is the first report of T. afroharzianum as a pathogen of maize in Italy.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1285-1285 ◽  
Author(s):  
C. Barrau ◽  
B. de los Santos ◽  
F. Romero

An anthracnose disease was observed affecting leaves of high-bush blueberry plants (Vaccinium corymbosum L. ‘Sharpblue’) in small areas within two production fields in Huelva Province of Andalucía, in southwestern Spain. The first symptoms observed in late spring were circular, necrotic lesions, red to salmon in color, and ranging from 3 to 20 mm in diameter. Later, lesions became salmon colored in the center with a brilliant red halo. Fungal isolations were made from the lesions. Infected tissues were surface-disinfected in 1% sodium hypochlorite for 1 min, blotted dry on sterile filter paper, and plated on 2% water agar. The plates were incubated at 25°C for 5 to 10 days. Fungal colonies isolated from the tissues were transferred to potato dextrose yeast agar (PDYA). Only one fungal species was consistently isolated from affected leaf tissues and was identified as Colletotrichum acutatum J.H. Simmonds based on morphological characteristics (2) and enzyme-linked immunosorbent assay (1). Colonies of the fungus on PDYA showed a white-to-gray dense mycelium covered with salmon-colored spore masses. The reverse of the plates was a pink-salmon color. Colony diameter on PDYA averaged 50 mm after 7 days at 25°C. Conidia were hyaline, aseptate, fusiform to cylindrical, and 12.5 × 3.2 μm. Inoculation of leaves and fruits of blueberry cv. Misty with a conidial suspension (106 conidia per ml) of C. acutatum produced lesions on the leaves and fruits similar to those observed on diseased plants in the field. The pathogen was isolated from lesions on inoculated plants. To our knowledge, this is the first report of C. acutatum in high-bush blueberry plants in Spain. References: (1) T. A. Cooke et al. EPPO Bull. 25:57, 1995. (2) B. C. Sutton. The Coelomycetes. CMI, Kew, England, 1980.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1163-1163 ◽  
Author(s):  
K. Perveen ◽  
N. Bokhari

In November 2008, a wilt of lavender (Lavandula pubescens) seedlings was observed in the greenhouse at King Saud University, Riyadh, Saudi Arabia. Affected seedlings were wilted and the root system was poorly developed. Diseased stems developed a dark coloration that extended down to the roots. Vascular tissue of the affected seedlings appeared red or brown. Isolations consistently yielded a fungus growing from the discolored stem tissue when placed on potato dextrose agar. The macroscopic characteristics of the colony, as well as microscopic structures, were used to identify the fungus as Fusarium oxysporum (2). Oval to elliptical microconidia without septa and originating from short phialides were used to distinguish the species from F. solani (1). The fungus was authenticated by the ITCC (Indian Type Collection Centre), Indian Agricultural Research Institute, New Delhi, India, and given I.D. No. 7532.09. For conducting further experiments, healthy seedlings of L. pubescens were obtained from the botanical garden of the King Saud University and grown in steam-sterilized soil. Healthy seedlings of lavender were inoculated using a root-dip method with a conidial suspension (1 × 107 CFU/ml) of one strain of F. oxysporum obtained from infected plants. Inoculated seedlings were then transplanted into steam-sterilized soil. Plants inoculated with sterilized water (1 ml per plant) served as control treatments. Wilt symptoms and vascular discoloration in the roots and crown developed within 20 days on all plants inoculated with the pathogen, while control plants remained asymptomatic. F. oxysporum was consistently reisolated from symptomatic plants. The pathogenicity test was conducted twice. To our knowledge, this is the first report of F. oxysporum on L. pubescens in Saudi Arabia or elsewhere in the world, and this newly identified disease may be a potential threat to commercial production of lavender. References: (1) J. F. Leslie and B. A. Summerell. Page 212 in: The Fusarium Laboratory Manual. Blackwell Publishing Professional, Hoboken, NJ, 2006. (2) P. C. Nelson et al. Clin. Microbiol. Rev. 7:479, 1994.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ziwei Zhou ◽  
Cuiping Wu ◽  
Jing Yang ◽  
Jieying Xu ◽  
Zhenpeng Chen ◽  
...  

Styphnolobium japonicum (L.) Schott is a variant of Robinia pseudoacacia and is a popular Asian tree widely used in traditional medicine. From March 2019 to 2021, a disease was found on the campus of Nanjing Forestry University and several landscape sites of Xuanwuhu Park, causing dieback. Most of the trees (approximately 40%) have rotted branches. On average, 60% of the branches per individual tree were affected by this disease. The initial round lesions were grayish brown. In the later stage, the whole branch becomes black and produces spherical fruiting bodies . Twenty diseased branches were picked from three random trees. Small tissues (3-4mm²) were surface-sterilized in 75% ethanol for 30 s followed by 1% NaClO for 90 s and placed on potato dextrose agar (PDA), and incubated in the dark at 25°C for three days. Hyphae were visibly emerged from 70% of the samples. Three representative isolates (Lth-soj1, Lth-soj2, and Lth-soj3) were obtained and deposited in China’s Forestry Culture Collection Center (Lth-soj1: cfcc55896, Lth-soj2: cfcc55897, Lth-soj3: cfcc55898). The colonies of three isolates on PDA were fast growing and white, which turned grey to dark grey after 3 days of incubation in the dark at 28°C . Two-weeks old colonies were black and fluffy on PDA, with abundant aerial mycelium, and the reverse side too was black in color. The fungus usually grew well on PDA and produced pycnidia and conidia within 3–4 weeks. Conidia were initially hyaline and aseptate, ellipsoid to ovoid, with granular content, apex broadly rounded, remaining hyaline and later becoming dark brown, one septate, thick walled, base truncate or round and longitudinally striate. The conidia (n=30) of a representative isolate(Lth-soj1), measured 24.3 ± 0.3 μm in length and 13.3 ± 0.5 μm in width . The morphological characters of the three isolates matched those of Lasiodiplodia parva(Alves et al. 2008). For accurate identification, the DNA of the three isolates was extracted. The internal transcribed spacer region (ITS), translation elongation factor (EF1-α), and β-tubulin 2 (TUB2) genes were amplified using the primer pairs ITS1/ITS4 , EF1-728F/EF1-986R, and Bt2a/Bt2b , respectively. The sequences were deposited in GenBank under accession numbers MZ613154, MZ643245 and MZ643242 for Lth-soj1, MZ613155, MZ643246 and MZ643244 for Lth-soj2, and MZ613157, MZ643247 and MZ643243 for Lth-soj3. The ITS, EF1-α, and TUB2 sequences of isolate Lth-soj1 (GenBank Acc. No. MZ613154, MZ643245, MZ643242) were 100% (519/519 nt), 99.34% (299/301 nt), and 99.77% (436/437 nt) identical to those of MZ182360, EF622063, and MK294119, respectively. Interspecific differences were observed in a maximum-likelihood tree of Lasiodiplodia species using the concatenated dataset. Based on the morphological and molecular evidence, the isolates were identified as L. parva. The pathogenicity of three isolates were tested on potted three-year-old seedlings (100-cm tall) of S. japonicum maintained in a greenhouse. Healthy stems were wounded with a sterile needle then inoculated with 10 µL of conidial suspension. Control plants were treated with ddH2O. In total, 12 seedlings were inoculated including three controls. Three seedlings per isolate and 10 stems per seedling were used for each treatment. The plants were kept inside sealed polythene bags for the first 24 h and sterilized H2O was sprayed into the bags twice a day to maintain humidity and kept in a greenhouse at the day/night temperatures at 25/16°C. Within seven days, all the inoculated points showed lesions similar to those observed in field and the conidiomatas growing on the surface of the branches, whereas controls were asymptomatic . The infection rate of each of the three isolates was 100%. The strain was re-isolated from the lesions and sequenced as L.parva, whereas not from control stems. This is the first report of L. parva causing rotten branches of S. japonicum in China and the worldwide. These data will help to develop effective strategies for managing this newly emerging disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Cinthia C. Cazal-Martínez ◽  
Yessica Magaliz Reyes Caballero ◽  
Alice Chávez ◽  
Pastor Enmanuel Pérez Estigarribia ◽  
Alcides Rojas ◽  
...  

The genus Pyricularia contains several fungal species known to cause diseases on plants in the Poaceae family (Klaubauf et al. 2014; Wang et al. 2019). While sampling for P. oryzae during March-2015 and April-2018, common weed Cenchrus echinatus L. was observed with leaf lesions in and around experimental wheat fields in the departments of Canindeyú and Itapúa. C. echinatus samples from both locations displayed similar leaf lesions, varying from small light brown pinpoint to elliptical brown lesions with greyish center. Symptomatic leaves were surface disinfested and cultured on potato dextrose agar (PDA) amended with 1% gentamicin at 25°C. Two monosporic isolates were obtained, one from Itapúa (ITCeh117) and the other from Canindeyú (YCeh55). The isolates were subsequently grown on oatmeal agar (OA) and PDA under a 12-h photoperiod at 25°C and evaluated after ten days for colony diameter, sporulation, macroscopic and microscopic features. Colonies on OA reached up to 4.8 cm diameter and were light grey, whereas colonies on PDA reached up to 5.3 cm diameter and were brown with grey centers, with cottony mycelium and broad white rims. Mycelium consisted of smooth, hyaline, branched, septate hyphae 4-4.5 µm diameter. Conidiophores were erect, straight or curved, unbranched, medium brown and smooth. Conidia were solitary, pyriform, pale brown, smooth, granular, 2-septate, 32-33 × 9-10 μm; truncated with protruding hilum and varied in length from 1.0 to 1.5 μm and diameters from 2.0 to 2.2 μm. Both isolates were similar and identified as Pyricularia pennisetigena, according to morphological and morphometric characteristics (Klaubauf et al. 2014). Subsequently, genomic DNA was extracted from each isolate using the primers described in Klaubauf et al. (2014) to amplify and sequence the internal transcribed spacers (ITS), partial large subunit (LSU), partial RNA polymerase II large subunit gene (RPB1), partial actin gene (ACT), and partial calmodulin gene (CAL). Sequences from each isolate (YCeh55/ITCeh117) were deposited in GenBank with the following submission ID for ITS: MN947521/MN947526, RPB1: MN984710/MN984715, LSU: MN944829/MN944834, ACT: MN917177/MN917182, and CAL: MN984688/MN984693. Phylogenetic analysis was conducted using the software Beast v1.10.4. The results obtained from the concatenated matrix of the five loci placed these isolates in the P. pennisetigena clade. To confirm pathogenicity, each isolate was adjusted to 5×104 conidia/ml of sterile water and C. echinatus plants were sprayed with the conidial suspension for isolate YCeh55, ITCeh117 or sterile water using an oilless airbrush sprayer until runoff. The three treatments were kept in the greenhouse at 25-28°C and about 75% relative humidity under natural daylight. Each treatment included three to five inoculated plants and 10 leaves were evaluated per treatment. Symptoms were observed 8-15 days after inoculation and were similar to those originally observed in the field for both isolates, whereas the control plants remained asymptomatic. P. pennisetigena was re-isolated from the inoculated leaves fulfilling Koch’s postulates. To our knowledge, this is the first report of leaf blight on C. echinatus caused by P. pennisetigena in Paraguay. The occurrence of P. pennisetigena in the region and its ability to infect economically important crops such as wheat and barley (Klaubauf et al. 2014; Reges et al., 2016, 2018) pose a potential threat to agriculture in Paraguay.


Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 706-706 ◽  
Author(s):  
C. J. Ramallo ◽  
L. D. Ploper ◽  
M. Ontivero ◽  
M. P. Filippone ◽  
A. Castagnaro ◽  
...  

Isolates were obtained from strawberry tissue with anthracnose symptoms from several locations near Tucumán, Argentina. Isolates were characterized using several criteria. Isolates produced fusiform conidia, tapered to a point at both ends, and averaged 13.5 × 4.9 μm. On potato dextrose agar, colonies produced a white cottony mycelial colony that turned orange in older cultures. Compared with Colletotrichum fragariae, the new isolates produced fewer appressoria. Pathogenicity tests were conducted on detached leaves and plants in the greenhouse and field. Detached immature leaves of cvs. Chandler, Fern, and Sweet Charlie were inoculated with a 20-μl droplet of an aqueous conidial suspension (106 conidia per ml) placed on the adaxial surface. Control leaves were inoculated with sterile distilled water. Leaves were maintained under white light (2,000 lux, 12 h/day) at 26°C, and 100% relative humidity. Necrotic spots were visible 4 days after inoculation. Greenhouse and field plants were spray-inoculated and covered for 48 h. Disease symptoms were mainly observed on petioles and runners 9 days after inoculation. No lesions were observed on control detached leaves or plants. Koch's postulates were confirmed in all cases. Based on morphological and cultural characteristics, isolates were identified as C. acutatum Simmonds (1). This is the first report of C. acutatum causing strawberry anthracnose in northwestern Argentina. Reference: (1) B. Smith and L. L. Black. Plant Dis. 74:69, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1274-1274 ◽  
Author(s):  
G. A. Díaz ◽  
B. A. Latorre ◽  
S. Jara ◽  
E. Ferrada ◽  
P. Naranjo ◽  
...  

Chile is considered the third major exporter of kiwifruits (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson) worldwide after Italy and New Zealand (1). The genus Diaporthe Nitschke (anamorph: genus Phomopsis) has been reported as causing postharvest rot in kiwifruit (4). During the current study, 1,400 fruits arbitrarily collected from seven controlled atmosphere (CA) rooms after 90 days of storage conditions (2% O2, 5% CO2) determined that 21.5% of the fruit were affected by decay and 0.86% developed symptoms different than those caused by Botrytis cinerea, the main postharvest pathogen associated to kiwifruit. Symptoms were soft rot with brown skin that started at the stem-end and in severe cases affected the entire fruit. Internally, affected fruit showed browning and watery tissues. Twelve affected fruits were surface disinfested (75% ethanol) and small pieces of internal rotten tissues were placed on acidified potato dextrose agar (APDA) for 7 days at 20°C. Twelve isolates were obtained, and four of them were identified morphologically and molecularly as Diaporthe ambigua, a species that has been previously described causing rot in stored kiwifruits in Chile (2). However, eight other flat, white to grayish colonies with sparse dirty-white aerial mycelium at the edge of the dish were obtained (3). Black pycnidia contained unicellular, hyaline, biguttulate, oval to cylindrical alpha conidia, with obtuse ends of (7.9) 6.7 (5.3) × (2.9) 2.5 (2.1) μm (n = 30). These isolates were tentatively identified as a Diaporthe sp. The species identification was determined by sequencing comparison of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the rDNA (GenBank Accession Nos. KJ210020 to 24, KJ210027, and KJ210033) and a portion of beta-tubulin (BT) (KJ210034 to 38, KJ210041, and KJ210047) using primers ITS4-ITS5 and Bt2a-Bt2b, respectively. BLAST analyses showed 99 to 100% identity with D. novem J.M. Santos, Vrandecic & A.J.L Phillips reference ex-type (KC343156 and KC344124 for ITS and BT, respectively) (3). Eighteen mature kiwifruits cv. Hayward were inoculated using a sterile cork borer on the surface of the fruit and placing 5-mm agar plugs with mycelial of D. novem (DN-1-KF). An equal number of fruits treated with sterile agar plugs were used as negative controls. After 30 days at 0°C under CA, all inoculated fruit showed rot symptoms with lesions 7.8 to 16.4 mm in diameter. The same D. novem isolate was inoculated with 30 μl of a conidial suspension (106 conidia/ml) on the surface of 18 ripe kiwifruits that were previously wounded and non-wounded as described above. An equal number of wounded and non-wounded fruits, treated with 30 μl sterile water, were used as negative controls. All inoculated wounded fruits developed rot symptoms with necrotic lesions of 14.1 to 20.2 mm of diameter after 14 days at 25°C. Inoculated non-wounded and negative control fruits remained symptomless. Koch's postulates were fulfilled by re-isolating D. novem only from the symptomatic fruits. To our knowledge, this is the first report of rot caused by D. novem on kiwifruit during cold storage in Chile and worldwide. Therefore, both Diaporthe species appears to be associated to Diaporthe rot of kiwifruit in Chile. References: (1) Belrose, Inc. World Kiwifruit Review. Belrose, Inc. Publishers, Pullman, WA, 2012. (2) J. Auger et al. Plant Dis. 97:843, 2013. (3) R. Gomes et al. Persoonia 31:1, 2013. (4) L. Luongo et al. J. Plant Pathol. 93:205, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1010-1010 ◽  
Author(s):  
D. Fernández-Ortuño ◽  
P. K. Bryson ◽  
G. Schnabel

Pilidium concavum (Desm.) Höhn. [synanamorph: Hainesia lythri (Desm.) Höhn.] is an opportunistic pathogen that causes leaf spots and stem necrosis in a wide range of hosts, including strawberry (Fragaria ananassa) (1,2). In October 2013, 24 strawberry plug plants (cv. Chandler) with brown to dark brown necrotic lesions on stolons were obtained from a nursery in Easley, SC. The lesions were oval shaped and varied in length from 2 to 8 mm. The tips of stolons with larger spots had died. To isolate the causal agent, 3 to 5 cm of necrotic stolon tissue was surface disinfected for 1 min with 10% bleach, rinsed with sterile distilled water, air dried, and placed on potato dextrose agar (PDA). After 7 days of incubation at 22°C, pink-orange masses of spores emerged. Single spore colonies on PDA produced a gray to brown colony with whitish aerial mycelium. Numerous discoid to hemisphaerical conidiomata (0.3 to 2.2 mm in diameter) developed with a dark base and exuded a pink, slimy mass that contained many conidia. Conidiophores (10.2 to 47.8 × 0.8 to 2.0 μm) were hyaline, unicellular, cylindrical, and filiform. Conidia (3.0 to 8.5 × 1.0 to 2.9 μm) were aseptate, fusiform, hyaline, and canoe-shaped to allantoid. On the basis of morphology, the pathogen was identified as P. concavum (3). The internal transcribed spacer region ITS1-5.8S-ITS2 was amplified by PCR and sequenced with primers ITS1 and ITS4 (4). The sequence was submitted to GenBank (Accession No. KF911079) and showed 100% homology with sequences of P. concavum. Pathogenicity was examined on strawberry fruit and leaves. Our previous efforts to achieve infection without wounding failed, which is consistent with experiences of other scientists (not cited). Thus, 24 strawberry fruit were wounded (1 cm deep) with a needle once, and submerged for 3 min in a conidial suspension (2 × 106 conidia ml−1). Controls were wounded and submerged in sterile water. After 4 days of incubation at 22°C, characteristic symptoms were observed at the wound site only on inoculated fruit. Detached leaves (about 6 cm in diameter) from 3- to 4-week-old strawberry plants cv. Chandler were surface sterilized and placed right side up in petri dishes (one leaf per dish) containing water agar. Leaves were inoculated at one site with a 50 μl conidial suspension (2 × 106 conidia ml−1) after inflicting a scraping-type injury with a needle to the surface at the point of inoculation. Control leaves received just water. After 7 days of incubation at 22°C, only the inoculated leaves showed symptoms similar to those observed on strawberry stolons. The fungus was re-isolated from symptomatic fruit and leaf lesions and identity was confirmed based on morphological features. The experiments were repeated. To our knowledge, this is the first report of P. concavum causing tan-brown rot on strawberry tissue in South Carolina. Prior to this study, the pathogen has been described from different hosts and countries including Belgium, Brazil, China, France, Iran, Poland, and the United States. Contamination of strawberry nursery stock by P. concavum could become a plant health management issue in the United States, especially if the pathogen is transferred to strawberry production areas. Further information on in-field occurrence of P. concacum is needed. References: (1) J. Debode et al. Plant Dis. 95:1029, 2011. (2) W. L. Gen et al. Plant Dis. 96:1377, 2012. (3) A. Y. Rossman et al. Mycol. Prog. 3:275, 2004. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Sign in / Sign up

Export Citation Format

Share Document