scholarly journals First Report of Coleus blumei viroid 2 from Commercial Coleus in China

Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 494-494 ◽  
Author(s):  
F. H. Fu ◽  
S. F. Li ◽  
D. M. Jiang ◽  
H. Q. Wang ◽  
A. Q. Liu ◽  
...  

Coleus (Coleus blumei) is an ornamental plant that is susceptible to infection by several viroids of the genus Coleviroid, which is a member of the family Pospiviroidae. Coleus blumei viroid (CbVd) -1 was first reported in commercial yellow coleus fields in Brazil in 1989 (1). In addition, CbVd-2, CbVd-3, and CbVd-4 have only been detected from coleus in Germany in 1996 (4). CbVd-5 and CbVd-6 were recently identified in China (2). In March 2010, leaves were collected from 50 symptomless coleus plants from a commercial nursery in Hainan Province, China. Total RNA was extracted from the leaves (3). Reverse transcription (RT)-PCR using CbVd-2 specific primers (forward: 5′-AGCTTACCTGGGTTCCCT-3′ and reverse: 5′-CTCTCCTCTATTTACTCTCTTCTC-3′) corresponding to positions 76 to 93 and 52 to 75 on the CbVd-2 reference sequence, respectively (GenBank Accession No. NC003682). Amplification of a 301-bp product was obtained from one sample. This PCR product was then cloned into pMD18-T (Takara, Dalian, China). Twelve positive clones were sequenced and the results were subjected to BLAST analysis. Sequence analysis showed that two sequences (GenBank Accessions Nos. HQ727542 and HQ727544) shared 99% identity with the reference sequence of CbVd-2 (NC003682), and four sequences (HQ727541, HQ727543, HQ727545 and HQ727547) had 99.34% identity with the reference sequence of CbVd-2 (NC003682). The proposed secondary structures of these variants have approximately 75% paired nucleotides. Results suggested the presence of CbVd-2, which is a member of the Coleviroid genus, Pospoviroidae family. To our knowledge, this is the first report of CbVd-2 from commercial coleus in China. References: (1) M. E. N. Fonseca et al. Fitopatol. Bras. 14:94, 1989. (2) W. Y. Hou et al. Arch. Virol. 154:993, 2009. (3) S. F. Li et al. Ann. Phytopathol. Soc. Jpn. 61:381, 1995. (4) R. L. Spieker et al. J. Gen. Virol. 77:2839, 1996.

Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 561-561 ◽  
Author(s):  
D. M. Jiang ◽  
S. F. Li ◽  
F. H. Fu ◽  
Z. J. Wu ◽  
L. H. Xie

Coleus blumei, which was found originally in Indonesia, is an ornamental plant grown worldwide. It can be infected by several viroids of the genus Coleviroid, family Pospiviroidae. Six main viroids that infect coleus have been reported: Coleus blumei viroid 1 through 6 (CbVd-1 ~ CbVd-6). Although CbVd-1 was first reported in a commercial coleus in Brazil in 1989 (1), and then in Germany, Japan, Canada, Korea, China, and India, CbVd-5 was reported only in China in 2009 (2). Symptoms caused by CbVd-5 varied depending on different cultivars, and in case of an unknown cultivar of “Red with dark green edge,” are very clear albino symptoms. From 2010 to 2011, 60 and 3 leaf samples of coleus were collected from Hyderabad, India, and Java, Indonesia, respectively, and subjected to low molecular weight RNA extraction according to Li et al. (3). The results of dot-blot hybridization using CbVd-5 cRNA probes and RT-PCR using CbVd-5 specific primers (CbVd-5-PF: 5′-TGACTAGAACAGTAGTAAAG-3′ / CbVd-5-PR: 5′-AATTGAGGTCAAACCTCTTT-3′) demonstrated that 28 out of the 60 samples from India and all three samples from Indonesia were positive for CbVd-5. The resulting RT-PCR fragments from one sample selected randomly from each country were cloned into the pMD18-T vector (Takara) and transformed into E. coli DH5α competent cells. Five positive clones of each sample were sequenced. The result of sequence analysis revealed that the similarities of CbVd-5 between the sequences we obtained and the reference sequence (GenBank Accession No. NC003683) were 97.8 to 100%. Bioassay using nine viroid-free coleus plants from three cultivars (three from each cultivar), inoculated with CbVd-5 infectious clones by stem slashing, demonstrated that CbVd-5 could induce albino symptom on the leaves of the unknown cultivar “Red with dark green edge” 2 months after inoculation. To our knowledge, this is the first report of CbVd-5 from India and Indonesia, and the second report of CbVd-5 in the world. Considering the effect of CbVd-5 on the appearance of coleus and its recombination ability, a certification program may be needed to control the spread of this viroid. References: (1) M. E. N. Fonseca et al. Fitopatol. Bras. 14:94, 1989. (2) W. Y. Hou et al. Arch. Virol. 154:315, 2009. (3) S. F. Li et al. Ann. Phytopathol. Soc. Jpn. 61:381, 1995.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 425-425 ◽  
Author(s):  
W.-L. Rao ◽  
Z.-K. Zhang ◽  
R. Li

Plants in the genus Prunus of the family Rosaceae are important fruit and ornamental trees in China. In June of 2007, sweet cherry (Prunus avium) trees with mottling and mosaic symptoms were observed in a private garden near Kunming, Yunnan Province. Twenty-four samples, six each from sweet cherry, sour cherry (P. cerasus), flowering cherry (P. serrulata), and peach (P. persica) were collected from trees in private and community gardens in the area. The peach and sour and flowering cherry trees did not show any symptoms. Total nucleic acids were extracted using a cetyltrimethylammoniumbromide (CTAB) extraction method, and the extracts were tested for the following eight viruses by reverse transcription (RT)-PCR: American plum line pattern virus, Apple chlorotic leaf spot virus, Cherry green ring mottle virus, Cherry necrotic rusty mottle virus, Cherry virus A (CVA), Little cherry virus 1, Prune dwarf virus, and Prunus necrotic ringspot virus. Only CVA was detected in two symptomatic sweet cherry trees by RT-PCR with forward (5′-GTGGCATTCAACTAGCACCTAT-3′) and reverse (5′-TCAGCTGCCTCAGCTTGGC-3′) primers specific to an 873-bp fragment of the CVA replicase gene (2). The CVA infection of the two trees was confirmed by RT-PCR using primers CVA-7097U and CVA-7383L that amplified a 287-bp fragment from the 3′-untranslated region (UTR) of the virus (1). Amplicons from both amplifications were cloned and sequenced. Analysis of the predicted amino acid sequences of the 873-bp fragments (GenBank Accession Nos. EU862278 and EU862279) showed that they were 98% identical with each other and 97 to 98% with the type isolate of CVA from Germany (GenBank Accession No. NC_003689). The 286-bp sequences of the 3′-UTR (GenBank Accession Nos. FJ608982 and FJ608983) were 93% identical with each other and 93 to 98% with the type isolate. The sequence indicated that the three isolates were very similar and should be considered to be the same strain. CVA is a member of the genus Capillovirus in the family Flexiviridae and has been previously reported in Europe, North America, and Japan. The contribution of CVA to the symptoms observed and its distribution in China remain to be evaluated. To our knowledge, this is the first report of CVA in sweet cherry in China. References: (1) M. Isogai et al. J. Gen. Plant Pathol. 70:288. (2) W. Jelkmann. J. Gen. Virol. 76:2015, 1995.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gardenia Orellana ◽  
Alexander V Karasev

Coleus scutellarioides (syn. Coleus blumei) is a widely grown evergreen ornamental plant valued for its highly decorative variegated leaves. Six viroids, named Coleus blumei viroid 1 to 6 (CbVd-1 to -6) have been identified in coleus plants in many countries of the world (Nie and Singh 2017), including Canada (Smith et al. 2018). However there have been no reports of Coleus blumei viroids occurring in the U.S.A. (Nie and Singh 2017). In April 2021, leaf tissue samples from 27 cultivars of C. blumei, one plant of each, were submitted to the University of Idaho laboratory from a commercial nursery located in Oregon to screen for the presence of viroids. The sampled plants were selected randomly and no symptoms were apparent in any of the samples. Total nucleic acids were extracted from each sample (Dellaporta et al. 1983) and used in reverse-transcription (RT)-PCR tests (Jiang et al. 2011) for the CbVd-1 and CbVd-5 with the universal primer pair CbVds-P1/P2, which amplifies the complete genome of all members in the genus Coleviroid (Jiang et al. 2011), and two additional primer pairs, CbVd1-F1/R1 and CbVd5-F1/R1, specific for CbVd-1 and CbVd-5, respectively (Smith et al. 2018). Five C. blumei plants (cvs Fire Mountain, Lovebird, Smokey Rose, Marrakesh, and Nutmeg) were positive for a coleviroid based on the observation of the single 250-nt band in the RT-PCR test with CbVds-P1/P2 primers. Two of these CbVd-1 positive plants (cvs Lovebird and Nutmeg) were also positive for CbVd-1 based on the presence of a single 150-nt band in the RT-PCR assay with CbVd1-F1/R1 primers. One plant (cv Jigsaw) was positive for CbVd-1, i.e. showing the 150-nt band in RT-PCR with CbVd1-F1/R1 primers, but did not show the ca. 250-bp band in RT-PCR with primers CbVds-P1/P2. None of the tested plants were positive for CbVd-5, either with the specific, or universal primers. All coleviroid- and CbVd-1-specific PCR products were sequenced directly using the Sanger methodology, and revealed whole genomes for five isolates of CbVd-1 from Oregon, U.S.A. The genomes of the five CbVd-1 isolates displayed 96.9-100% identity among each other and 96.0-100% identity to the CbVd-1 sequences available in GenBank. Because the sequences from cvs Lovebird, Marrakesh, and Nutmeg, were found 100% identical, one sequence was deposited in GenBank (MZ326145). Two other sequences, from cvs Fire Mountain and Smokey Rose, were deposited in the GenBank under accession numbers MZ326144 and MZ326146, respectively. To the best of our knowledge, this is the first report of CbVd-1 in the United States.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1023-1026 ◽  
Author(s):  
R. J. Schnell ◽  
D. N. Kuhn ◽  
C. M. Ronning ◽  
D. Harkins

A method for the routine detection of avocado sunblotch viroid (ASBVd) in nucleic acid extracts of infected avocado tissues by reverse transcription-polymerase chain reaction (RT-PCR) was developed using ASBVd-specific primers. Amplified cDNA products were analyzed by electrophoresis on nondenaturing 6% polyacrylamide slab gels. The size of the major RT-PCR product from ASBVd-infected tissue was estimated to be 250 bp. This product was absent from amplified extracts of uninfected tissue. The amplification product from ASBVd was sequenced by the dideoxynucleotide chain termination method, and the sequence was over 97% identical to the published sequence. The RT-PCR assay is sensitive enough to allow viroid detection without requiring large amounts of tissue, highly purified ASBVd, or molecular hybridization.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 881-881 ◽  
Author(s):  
S. Sundaraj ◽  
R. Srinivasan ◽  
C. G. Webster ◽  
S. Adkins ◽  
K. Perry ◽  
...  

Tomato yellow leaf curl virus (TYLCV) and Tomato spotted wilt virus (TSWV) are prevalent in field-grown tomato (Solanum lycopersicum) production in Georgia. Typical TYLCV symptoms were observed during varietal trials in fall 2009 and 2010 to screen genotypes against TYLCV at the Coastal Plain Experiment Station, Tifton, GA. However, foliar symptoms atypical of TYLCV including interveinal chlorosis, purpling, brittleness, and mottling on upper and middle leaves and bronzing and intense interveinal chlorosis on lower leaves were also observed. Heavy whitefly (Bemisia tabaci (Gennadius), B biotype) infestation was also observed on all tomato genotypes. Preliminary tests (PCR and nucleic acid hybridization) in fall 2009 indicated the presence of TYLCV, TSWV, Cucumber mosaic virus, and Tomato chlorosis virus (ToCV); all with the exception of ToCV have been reported in Georgia. Sixteen additional symptomatic leaf samples were randomly collected in fall 2010 and the preliminary results from 2009 were used to guide testing. DNA and RNA were individually extracted using commercially available kits and used for PCR testing for ToCV, TYLCV, and TSWV. Reverse transcription (RT)-PCR with ToCV CP gene specific primers (4) produced approximately 750-bp amplicons from nine of the 16 leaf samples. Four of the nine CP gene amplicons were purified and directly sequenced in both directions. The sequences were 99.4 to 100.0% identical with each other (GenBank Accession Nos. HQ879840 to HQ879843). They were 99.3 to 99.5%, 97.2 to 97.5%, and 98.6 to 98.9% identical to ToCV CP sequences from Florida (Accession No. AY903448), Spain (Accession No. DQ136146), and Greece (Accession No. EU284744), respectively. The presence of ToCV was confirmed by amplifying a portion of the HSP70h gene using the primers HSP-1F and HSP-1R (1). RT-PCR produced approximately 900-bp amplicons in the same nine samples. Four HSP70h gene amplicons were purified and directly sequenced in both directions. The sequences were 99.4 to 99.7% identical to each other (Accession Nos. HQ879844 to HQ879847). They were 99.2 to 99.5%, 98.0 to 98.4%, and 98.9 to 99.3% identical to HSP70h sequences from Florida (Accession No. AY903448), Spain (Accession No. DQ136146), and Greece (Accession No. EU284744), respectively. TYLCV was also detected in all 16 samples by PCR using degenerate begomovirus primers PAL1v 1978 and PARIc 496 (3) followed by sequencing. TSWV was also detected in two of the ToCVinfected samples by RT-PCR with TSWV N gene specific primers (2) followed by sequencing. To our knowledge, this is the first report of the natural occurrence of ToCV in Georgia. Further studies are required to quantify the yield losses from ToCV alone and synergistic interactions between ToCV in combination with TSWV and/or TYLCV in tomato production in Georgia. References: (1) T. Hirota et al. J. Gen. Plant Pathol. 76:168, 2010. (2) R. K. Jain et al. Plant Dis. 82:900, 1998. (3) M. R. Rojas et al. Plant Dis. 77:340, 1993. (4) L. Segev et al. Plant Dis. 88:1160, 2004.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1056-1056 ◽  
Author(s):  
D. S. Egel ◽  
S. Adkins

During September 2006, moderate vine decline symptoms including vine collapse and wilt and root rot were observed on numerous watermelon plants growing in a commercial field in Sullivan County, Indiana. No symptoms were observed on the fruit. Six plants displaying typical vine decline symptoms were collected and assayed for potyvirus infection and subsequently for Squash vein yellowing virus (SqVYV) and Papaya ringspot virus type W (PRSV-W). SqVYV is a whitefly-transmitted member of the Potyviridae, recently shown to cause watermelon vine decline in Florida (1,4). Plants infected with SqVYV in Florida are also frequently infected with PRSV-W, although SqVYV is sufficient for watermelon vine decline. The six field samples harbored one or more potyviruses as determined by ELISA (Agdia, Elkhart, IN). Mechanical inoculation of squash (Cucurbita pepo) and watermelon with sap from three of the field samples induced mosaic symptoms in both that are typical of potyviruses. Vein yellowing in squash and plant death in watermelon typical of SqVYV (1) later developed in plants inoculated with one field sample. A coat protein gene fragment was amplified by reverse transcription (RT)-PCR with SqVYV primers (1) from total RNA of five of the six field samples and also from the symptomatic, inoculated plants. Nucleotide and deduced amino acid sequences of a 957-bp region of the RT-PCR product (primer sequences deleted prior to analysis) were 100% identical to SqVYV (GenBank accession No. DQ812125). PRSV-W also was identified in two of the five SqVYV-infected field samples by ELISA (Agdia) and by sequence analysis of a 3′ genome fragment amplified by RT-PCR with previously described degenerate potyvirus primers (3). No evidence for infection by other potyviruses was obtained. To our knowledge, this is the first report of SqVYV in Indiana and the first report of the virus anywhere outside of Florida. The whitefly (Bemisia tabaci, B strain) vector of SqVYV is relatively uncommon in Indiana and the cold winter temperatures make it unlikely that any SqVYV-infected watermelon vines or whiteflies will overseason, necessitating reintroductions of virus and vector each season. We feel that the moderate and restricted occurrence of SqVYV in Indiana observed in September 2006 should pose little or no threat to commercial watermelon production in Indiana and should not cause growers to alter their growing practices. The occurrence of SqVYV in Indiana does not appear to explain the similar symptoms of mature watermelon vine decline (MWVD) that has been observed in Indiana since the 1980s. In contrast with the insect vectored SqVYV, MWVD seems to be caused by a soilborne biological agent (2). References: (1) S. Adkins et al. Phytopathology 97:145, 2007. (2) D. S. Egel et al. Online publication. doi:10.1094/PHP-2000-1227-01-HN. Plant Health Progress, 2000. (3) A. Gibbs and A. Mackenzie. J. Virol. Methods 63:9, 1997. (4) P. Roberts et al. Citrus Veg. Mag. December 12, 2004.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1132-1132 ◽  
Author(s):  
M. C. Cebrián ◽  
M. C. Córdoba-Sellés ◽  
A. Alfaro-Fernández ◽  
J. A. Herrera-Vásquez ◽  
C. Jordá

Viburnum sp. is an ornamental shrub widely used in private and public gardens. It is common in natural wooded areas in the Mediterranean Region. The genus includes more than 150 species distributed widely in climatically mild and subtropical regions of Asia, Europe, North Africa, and the Americas. In January 2007, yellow leaf spotting in young plants of Viburnun lucidum was observed in two ornamental nurseries in the Mediterranean area of Spain. Symptoms appeared sporadically depending on environmental conditions but normally in cooler conditions. Leaf tissue from 24 asymptomatic and five symptomatic plants was sampled and analyzed by double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany) and Alfalfa mosaic virus (AMV) (SEDIAG S.A.S, Longvic, France). All symptomatic plants of V. lucidum were positive for Alfalfa mosaic virus (AMV). The presence of AMV was tested in the 29 samples by one-step reverse transcription (RT)-PCR with the platinum Taq kit (Invitrogen Life Technologies, Barcelona, Spain) using primers derived from a partial fragment of the coat protein gene of AMV (2). The RT-PCR assays produced an expected amplicon of 700 bp in the five symptomatic seropositive samples. No amplification product was observed when healthy plants or a water control were used as a template in the RT-PCR assays. One PCR product was purified (High Pure PCR Product Purification Kit; Roche Diagnostics, Mannheim, Germany) and directly sequenced (GenBank Accession No. EF427449). BLAST analysis showed 96% nucleotide sequence identity to an AMV isolate described from Phlox paniculata in the United States (GenBank Accession No. DQ124429). This virosis has been described as affecting Viburnum tinus L. in France (1). To our knowledge, this is the first report of natural infection of Viburnum lucidum with AMV in Spain, which might have important epidemiological consequences since V. lucidum is a vegetatively propagated ornamental plant. References: (1) L. Cardin et al. Plant Dis. 90:1115, 2006. (2) Ll. Martínez-Priego et al. Plant Dis. 88:908, 2004.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 970-970 ◽  
Author(s):  
R. M. Castro ◽  
E. Hernandez ◽  
F. Mora ◽  
P. Ramirez ◽  
R. W. Hammond

In early 2007, severe yellowing and chlorosis symptoms were observed in field-grown and greenhouse tomato (Solanum lycopersicum L.) plants in Costa Rica. Symptoms resembled those of the genus Crinivirus (family Closteroviridae), and large populations of whiteflies, including the greenhouse whitefly Trialeurodes vaporariorum (Westwood), were observed in the fields and on symptomatic plants. Total RNA was extracted from silica gel-dried tomato leaf tissue of 47 representative samples (all were from symptomatic plants) using TRI Reagent (Molecular Research Inc., Cincinnati, OH). Reverse transcription (RT)-PCR reactions were performed separately with each of the four primer sets with the Titan One-Tube RT-PCR Kit (Roche Diagnostics Corp., Chicago IL). Specific primers used for the detection of the criniviruses, Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV), were primer pair ToCV-p22-F (5′-ATGGATCTCACTGGTTGCTTGC-3′) and ToCV-p22-R (5′-TTATATATCACTCCCAAAGAAA-3′) specific for the p22 gene of ToCV RNA1 (1), primer pair ToCVCPmF (5′-TCTGGCAGTACCCGTTCGTGA-3′) and ToCVCPmR (5′-TACCGGCAGTCGTCCCATACC-3′) designed to be specific for the ToCV CPm gene of ToCV RNA2 (GenBank Accession No. AY903448) (2), primer pair ToCVHSP70F (5′-GGCGGTACTTTCGACACTTCTT-3′) and ToCVHSP70R (5′-ATTAACGCGCAAAACCATCTG-3′) designed to be specific for the Hsp70 gene of RNA2 of ToCV (GenBank Accession No. EU284744) (1), and primer pair TICV-CP-F and TICV-CP-R specific for the coat protein gene of TICV (1). Amplified DNA fragments (582 bp) were obtained from nine samples, four from the greenhouse and five from the open field, with the ToCV-p22 specific primers and were cloned into the pCRII TOPO cloning vector (Invitrogen, Carlsbad, CA). Nucleotide sequence analysis of all purified RT-PCR products verified their identity as ToCV, sharing 99.5 to 100% sequence identity among themselves and 96% to 98% sequence identity with previously reported ToCV p22 sequences from Florida (Accession No. AY903447), Spain (Accession No. DQ983480), and Greece (Accession No. EU284745). The presence of ToCV in the samples was confirmed by additional amplification and sequence analysis of the CPm (449-bp fragment) and Hsp70 (420-bp fragment) genes of ToCV RNA2 and sharing 98 to 99% sequence homology to Accession Nos. AY903448 and EU284774, respectively. One representative sequence of the p22 gene of the Costa Rican isolate was deposited at GenBank (Accession No. FJ809714). No PCR products were obtained using either the TICV-specific primers nor from healthy tomato tissue. The ToCV-positive samples were collected from a region in the Central Valley around Cartago, Costa Rica. To our knowledge, this is the first report of ToCV in Costa Rica. The economic impact on tomato has not yet been determined. Studies are underway to determine the incidence of ToCV in Costa Rica field-grown and greenhouse tomatoes. References: (1) A. R. A. Kataya et al. Plant Pathol. 57:819, 2008. (2) W. M. Wintermantel et al. Arch. Virol. 150:2287, 2005.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1108-1108 ◽  
Author(s):  
C. Córdoba ◽  
A. García-Rández ◽  
N. Montaño ◽  
C. Jordá

In July 2003, noticeable deformations of leaves were observed on a local variety of Capsicum chinense, also called ‘Aji dulce’, from a pepper plantation located in Venezuela, (Monagas State). ‘Aji dulce’ is a basic ingredient of the Venezuelan gastronomy with an estimated cultivated area of 2,000 ha. The seeds of this local pepper are obtained by the growers who reproduce and multiply their own seeds every year. Seeds of affected plants were sent to our laboratory, and a group of approximately 100 seeds was sown in a controlled greenhouse that belongs to the Polytechnic University of Valencia, Spain. Three months later, obvious curling and bubbling developed on the leaves of the plants. Extracts of symptomatic plants tested negative for Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), Pepper mild mottle virus (PMMV), and Tobacco etch virus (TEV) by double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) with policlonal antibodies specific to each virus (Loewe Biochemica GMBH, Sauerlach, Germany; Phyto-Diagnostics, INRA, France). Total RNA was isolated from 0.5 g of original seed sent from Venezuela and from 25 samples of leaves of plants grown in the greenhouse with an RNeasy Plant Mini Kit (Qiagen Sciences, Germantown, Maryland). The RNA isolated was used in reverse transcription-polymerase chain reaction (RT-PCR) with specific primers for Tobacco mild green mosaic virus (TMGMV) (1) predicted to amplify a 530 bp of the coat protein region. From all samples, a RT-PCR product of the expected size was obtained and then sequenced. BLAST analysis of one sequence (GenBank Accession No. DQ460731) showed high levels of identity with TMGMV isolates, with more than 99% nucleotide identity with the DSMZ PV-112 isolate (GenBank Accession No. AJ429096). The symptomatology observed on pepper plants, the TMGMV RT-PCR assay, and the consensus of sequenced regions with TMGMV lead us to conclude that TMGMV was the causal agent of the diseased C. chinense plants. Although TMGMV has a wide plant host range occurring worldwide (1), to our knowledge, this is not only the first time TMGMV has been detected in Venezuela, but also the first report of TMGMV in C. chinense in Venezuela and the first reliable probe of the TMGMV seed transmission. Reference: (1) J. Cohen et al. Ann. Appl. Biol. 138:153, 2001.


Sign in / Sign up

Export Citation Format

Share Document