scholarly journals First Report of Phaeoacremonium inflatipes, P. iranianum, and P. sicilianum Causing Petri Disease of Grapevine in Spain

Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 964-964 ◽  
Author(s):  
D. Gramaje ◽  
J. Armengol ◽  
M. I. Colino ◽  
R. Santiago ◽  
E. Moralejo ◽  
...  

In 2008, four isolates of Phaeoacremonium, morphologically and genetically different from known Phaeoacremonium spp. in Spain, were isolated from rootstocks of young grapevine (Vitis vinifera) plants showing Petri disease symptoms including low vigor, reduced foliage, and dark streaking of the xylem in Badajoz Province (western Spain; cv. Syrah on SO4 rootstock), Tarragona Province (eastern Spain; cv. Garnacha on 161 49 C rootstock), and Balearic Islands (eastern Spain; cv. Tempranillo on Rupestris de Lot rootstock). Single-conidial isolates were obtained and grown on potato dextrose agar (PDA) and malt extract agar (MEA) at 25°C for 2 to 3 weeks in the dark until colonies sporulated (3). Identification was based on morphological characteristics (1–3). Phaeoacremonium inflatipes W. Gams, Crous & M. J. Wingf. and P. iranianum L. Mostert, Gräf., W. Gams & Crous were detected in Badajoz Province and P. sicilianum Essakhi, Mugnai, Surico & Crous in Tarragona Province and Balearic Islands. Colonies of P. inflatipes were gray on PDA and gray-brown on MEA. Conidiophores were branched, 15 to 37 (mean 25) μm long. Conidia were hyaline, oblong-ellipsoidal or obovoid, 3 to 5.5 (mean 4) μm long, and 1.2 to 1.9 (mean 1.6) μm wide. Colonies of P. iranianum were brownish gray on PDA and pale brown on MEA. Conidiophores were unbranched and 18 to 47.5 (mean 29) μm long. Conidia were hyaline, oblong-ellipsoidal, 3 to 5 (mean 4) μm long, and 1 to 1.8 (mean 1.5) μm wide. Colonies of P. sicilianum were pale brown on PDA and brown to pale orange on MEA. Conidiophores were branched and 13 to 55 (mean 32.5) μm long. Conidia were hyaline, allantoid, 3 to 8.5 (mean 6) μm long, and 1.5 to 2 (mean 1.8) μm wide. Identity of isolates Pin-2, Pir-4, Psi-1, and Psi-2 was confirmed by sequencing a fragment of the beta-tubulin gene with primers T1 and Bt2b (P. inflatipes, isolate Pin-2: GenBank Accession No. FJ872407, 100% similarity to Accession No. AY579323; P. iranianum, isolate Pir-4: GenBank Accession No. FJ872406, 99% similarity to Accession No. EU128077; P. sicilianum isolates Psi-1 and Psi-2: GenBank Accession Nos. FJ872408 and No. FJ872409, 100% similarity to Accession No. EU863489). Pathogenicity tests were conducted using Pin-2, Pir-4, and Psi-1 isolates. One-year-old callused and rooted cuttings of 110 R rootstock cultivated in sterile peat were wounded at the uppermost internode with an 8-mm cork borer. An 8-mm mycelium plug from a 2-week-old culture was placed into the wound. Wounds were wrapped with Parafilm. Ten cuttings per fungal isolate were used. Ten control plants were inoculated with 8-mm noncolonized PDA plugs. Plants were maintained in a greenhouse at 25°C. Within 2 months, all Phaeoacremonium-inoculated cuttings exhibited shoots with poor growth, small leaves, short internodes, and black streaks in the xylem. The mean shoot weight per plant was 1.8 g in P. inflatipes-inoculated plants, 1.9 g in P. iranianum-inoculated plants, and 1.6 g in P. sicilianum-inoculated plants, all lower than the control treatment (6.8 g). Control plants did not show any symptoms. All fungal species were reisolated from wood of all inoculated cuttings, completing Koch's postulates. Their identity was confirmed with the methods described above. To our knowledge, this is the first report of P. inflatipes, P. iranianum, and P. sicilianum causing Petri disease in Spain. References: (1) P. W. Crous et al. Mycologia 88:786, 1996. (2) S. Essakhi et al. Persoonia 21:119, 2008. (3) L. Mostert et al. Stud. Mycol. 54:1, 2006.

Plant Disease ◽  
2021 ◽  
Author(s):  
Romana Anjum ◽  
Iqrar Ahmad Khan ◽  
Mark L. Gleason ◽  
Noumal Hassani

Psidium guajava is a widely grown fruit tree of Asia for food and medicinal purposes. Also being reported to have anti-inflammatory, antimicrobial, antioxidant, antidiarrheal, antimutagenic properties (Somu, 2012). In April 2018, quick decline disease of guava was observed in orchards of Sheikhupura, Lahore, Faisalabad, Kasur and Chiniot districts of Punjab, Pakistan. Approximately 68% of the trees were found declined with mummified fruits. Initial infection symptoms appeared as wilting of leaves, bark discoloration, followed by the leaf drooping, crown area discoloration, bark splitting, mummified fruits, dying of branches and lately whole tree death in weeks to months. The fungus formed a dark brown to black discoloration (3 to 5 cm wide and 7 to 9 cm long) in vascular bundles of P. guajava tree. Sixty-five samples of discolored wood from the main stem were collected, and pathogen was isolated using carrot bait method (Moller and DeVay, 1968). Isolation and purification were done on 2% Malt extract agar (MEA) plates incubated at 25 ± 2 °C in 12 h light and dark period. After 6 days of incubation, fungal hyphae, fruiting structures, sexual & asexual spores were observed on MEA plates. Black globose to subglobose ascomata with bases (151-) 200 (-278) µm in diameter with long neck (511-) 535 to 600 (-671) µm long, (23-) 28 to 39 (-47) µm wide at base, (13-) 13- 19 (-25) µm wide at tip and light brown to hyaline divergent ostiolar hyphae (50µm) were developed and produces hat-shaped hyaline ascospores 3 to 5 µm long and 6-7 µm (with sheath) and 4 µm (without sheath) wide. After 7 days, initially white mycelium turned into olivaceous green and produced primary phialidic conidiophore with emerging primary cylindrical hyaline conidia (7 to 12 × 4 to 6 µm), secondary conidiophore with emerging chain of secondary barrel-shaped hyaline conidia (9-) 10 to 12 (-13) µm long × (5-) 5 to 9 (-11) µm wide and dark brown dematiaceous chlamydospores conidia (12 ×10 µm) were observed. All morphological characteristics were consistent to the description of Ceratocystis manginecans (Van Wyk, et al., 2007). For further confirmation, from a purified isolate GWD10, genomic DNA was extracted. The internal transcribed spacer (ITS) and translation elongation factor 1-alpha (TEF 1-α) region were amplified with primer pairs ITS1/ITS4 and EF1/EF2 (Jacobs et al., 2004; White et al., 1990) respectively. Generated sequences (Accession Nos. MN 365128 & MT952139) on BLAST analysis showed 100% homology for ITS and TEF with Ceratocystis manginecans (Accession No., KC261852 CMW 13582 Voucher, NR-119532.1 type material, MH863135; EF433317, respectively) reported from Oman and Pakistan (Van Wyk et al., 2007 & Vu et al., 2019). For pathogenicity test, one-year-old healthy P. guajava plants were inoculated by making a T-shaped slit of 5 × 7.5 mm in the bark. Two weeks old cultures of GWD10, 5-mm mycelial discs were aseptically transferred and covered with moistened sterilized cotton swab followed parafilm to maintain humidity. Fifteen plants were inoculated with fungal cultures and five plants were inoculated with MEA plugs as controls. All plants were maintained at 25 ± 2 °C with 80 ± 5% relative humidity (RH) in greenhouse Initial bark discoloration developed after 14 days of inoculation. After 40 days of inoculation plants started wilting and dying, similar to the symptoms were observed in naturally infected trees. Control plants remained asymptomatic. To fulfill Koch’s pustulates, the same pathogen was re-isolated from the test plants and identified on morphological features to GWD10. The pathogen has been associated with mango decline in Oman and Pakistan (Van Wyk et al., 2007), acacia wilt in Indonesia (Harrington et al., 2015) and siris wilt in Pakistan (Razzaq et al., 2020). P guajava is an important fruit and medicinal plant, and the infection of C. manginecans is a great concern to the producers of P. guajava (Harrington et al., 2015; Huang et al., 2003). To our knowledge, this is the first report of Ceratocystis manginecans causing quick decline of P. guajava worldwide.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
I. Y. Choi ◽  
H. D. Shin

Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2020 ◽  
Author(s):  
Xue Li ◽  
Jie Li ◽  
Hua Yong Bai ◽  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
...  

Rubber tree (Hevea brasiliensis (Willd. ex Adr. Juss) Müll. Arg.) is used for the extraction of natural rubber and is an economically and socially important estate crop commodity in many Asian countries such as Indonesia, Malaysia, Thailand, India, Sri Lanka, China and several countries in Africa (Pu et al, 2007). Xishuangbanna City and Wenshan City are the main rubber cultivation areas in Yunnan Province, China. In November 2012, rubber tree showing typical wilt symptoms (Fig. 1 A) and vascular stains (Fig. 1 B) were found in Mengla County, Xishuangbanna City. This disease was destructive in these trees and plant wilt death rate reached 5%. The diseased wood pieces (0.5cm long) from trunk of rubber was surface disinfected with 75% ethanol for 30s and 0.1% mercuric chloride (HgCl2) for 2min, rinsed three times with sterile distilled water, plated onto malt extract agar medium (MEA), and incubated at 28℃. After 7 days, fungal-like filaments were growing from the diseased trunk. Six cultures from 6 rubber trunk were obtained and incubated on MEA at 28℃, after 7 days to observe the cultural features. The mycelium of each culture was white initially on MEA, and then became dark green. Cylindrical endoconidia apices rounded, non-septate, smooth, single or borne in chains (8.9 to 23.6 × 3.81 to 6.3μm) (Fig. 1 C). Chlamydospores (Fig. 1 D) were abundant, thick walled, smooth, forming singly or in chains (11.1 to 19.2 × 9.4 to 12.0μm). The mould fungus was identifed as Chalaropsis based on morphology (Paulin-Mahady et al. 2002). PCR amplification was carried out for 3 isolates, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (Thorpe et al. 2005). The nucleotide sequences were deposited in the GenBank data base and used in a Blast search of GenBank. Blast analysis of sequenced isolates XJm8-2-6, XJm8-2 and XJm10-2-6 (accessions KJ511486, KJ511487, KJ511489 respectively) had 99% identity to Ch. thielavioides strains hy (KF356186) and C1630 (AF275491). Thus the pathogen was identified as Ch. thielavioides based on morphological characteristics and rDNA-ITS sequence analysis. Pathogenicity test of the isolate (XJm8-2) was conducted on five 1-year-old rubber seedlings. The soil of 5 rubber seedlings was inoculated by drenching with 40 ml spore suspension (106 spores / ml). Five control seedlings were inoculated with 40 ml of sterile distilled water. All the seedlings were maintained in a controlled greenhouse at 25°C and watered weekly. After inoculated 6 weeks, all the seedlings with spore suspension produced wilt symptoms, as disease progressed, inoculated leaves withered (Fig. 1 E) and vascular stains (Fig. 1 F) by 4 months. While control seedlings inoculated with sterile distilled water remained healthy. The pathogen re-isolated from all inoculated symptomatic trunk was identical to the isolates by morphology and ITS analysis. But no pathogen was isolated from the control seedlings. The pathogenicity assay showed that Ch. thielavioides was pathogenic to rubber trees. Blight caused on rubber tree by Ceratocystis fimbriata previously in Brazil (Valdetaro et al. 2015), and wilt by Ch. thielavioides was not reported. The asexual states of most species in Ceratocystis are “chalara” or “thielaviopsis” (de Beer et al. 2014). To our knowledge, this is the first report of this fungus causing wilt of rubber in China. The spread of this disease may pose a threat to rubber production in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Francisco Bruno da Silva Café ◽  
Rhannaldy Benício Rebouças ◽  
Juvenil H. Cares ◽  
Cristiano Souza Lima ◽  
Francisco de Assis Câmara Rabelo Filho ◽  
...  

During a survey in 2018 for plant nematodes associated with roots and soil in cactus cultivation areas in Ceará State (3°44'48"S, 38°34'29"W), cysts were found on roots of mandacaru, Cereus jamacaru DC. This cactus is native to Brazil, can grow to 6-10 meters in height, and is widely distributed in the Northeast region (Romeiro-Brito et al. 2016) where it is used in construction, in disease remedies, as forage, and as an ornamental (Sales et al. 2014). Several cysts, second-stage juveniles (J2) and eggs extracted from the soil and roots, using sucrose centrifugation, were examined by scanning electron microscopy (SEM) and light microscopy (LM) to determine morphological and morphometric characteristics. Molecular characteristics were determined by DNA extraction from J2 and embryonated eggs using a protocol specific for Heteroderidae (Subbotin et al., 2018). The internal transcribed spacer sequence (ITS) region of the rDNA and D2-D3 regions of the 28S rDNA were amplified using the universal primers TW81 (5′-GTTTCCGTAGGTGAACCTGC-3′) and AB28 (5′-ATATGCTTAAGTTCAGCGGGT-3′), D2A(5′-ACAAGTACCGTGAGGGAAAGTTG-3′) and D3B(5′-TCGGAAGGAACCAGCTACTA-3′), respectively. To confirm that mandacaru is a host for C. cacti, six plantlets of mandacaru were inoculated with 1,800 eggs of the nematode, and kept in a greenhouse at 31 ± 3 ºC and irrigated daily. Six non inoculated mandacaru plantlets served as control treatment. Morphometric characteristics of cysts (n=35) were body length, excluding neck, 555.8 ± 87.8 (354,9 - 727,6) μm, body width 392.1 ± 63.4 (297.9 - 553.7) μm, neck length 63.5 ± 25.8 (49.8-105.0) μm, length to width ratio 1.4 ± 0.2 (1.0-1.8) μm and vulval cone length 48.4 ± 15.2 (40.7 –53.6) μm. Cysts had a rough surface, were lemon-shaped to rounded and had a zigzag cuticular pattern with a protruding vulval cone. They were circumfenestrate without underbridge and bullae, but with the presence of vulval denticles. Measurements of second-stage juveniles (n = 13) included the body length 511.2 ± 33.7 (452.7 - 551.5) μm, stylet length 28.0 ± 2.8 (25.4 - 34.0) μm, tail length 50.7 ± 5.1 (40.6 - 57.4) μm, tail hyaline region 22.7 ± 2.2 (18.9 – 27.1), with a = 20.9 ± 2.2 (17.7-24.3) μm, b = 5.4 ± 0.4 (5.1-5.8) μm, b'= 3.4 ± 0.4 (3.1-3.9) μm, c = 10.2 ± 1.3 (8.9-13.3) μm and c' = 3.8 ± 0.4 (3.0-4.5) μm. The observations of essential morphological characteristics for identification indicated that the species found on C. jamacaru was Cactodera cacti (Filipjev & Schuurmans-Stekhoven, 1941) Krall & Krall, 1978. The sequences of the studied rDNA regions were submitted to GenBank (ITS: MW562829 and D2–D3 regions of 28S: MW562830). The samples used for molecular analysis showed a high degree of sequence identity (99.59%) with C. cacti, from China, Iran and USA for the ITS region. The identity of the D2-D3 regions of 28S sequence was 99.54% with C. cacti isolates from Germany and 99.41% with isolates from USA. Phylogenetic analyses were performed using Maximum likelihood (ML) method for both individual loci, confirming the species as Cactodera cacti. All inoculated mandacaru plantlets showed C. cacti cysts on the roots after 60 days, confirming that mandacaru is a host for C. cacti. This species was reported in São Paulo State, in 2001, associated with ornamental cactus cultivated in pots, but plant species were not identified (Santos et al., 2001). The second report in Brazil was to Schlumbergera sp., an ornamental plant (Oliveira et al. 2007). In both studies, the nematode was not morphologically nor molecularly characterized. Cactodera cacti has been commonly associated with cactus worldwide (Esser, 1992). It has been reported in association with C. jamacaru was first reported in 2011 in China (Duan et al. 2012). This is the first report of the occurrence of C. cacti on C. jamacaru in field conditions in Brazil, and its presence in cactus cultivation areas with agricultural importance represents a threat to cactus production in the country.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 133-133 ◽  
Author(s):  
N. Ogris ◽  
T. Hauptman ◽  
D. Jurc ◽  
V. Floreancig ◽  
F. Marsich ◽  
...  

In many European countries, the anamorphic Chalara fraxinea Kowalski (teleomorph Hymenoscyphus albidus [Roberge ex Desm.] Phillips; 1–3) is responsible for a severe and rapidly spreading dieback of common ash (Fraxinus excelsior L.) since it was first reported in Poland. Recently, this disease was added to the EPPO Alert List and the NAPPO Phytosanitary Alert System. Symptomatic trees were observed in a 1.8-ha ash-maple forest in northeastern Italy (Fusine, UD; 46°30′N, 13°37′E; 782 m above sea level) along the Italo-Slovenian border in July 2009. Symptoms were found on approximately 10% of mature common ash and 70% of seedlings. Main symptoms were shoot, twig, and branch dieback, wilting, and bark cankers (1). Fungal fruiting bodies were not found on or near the canker surface. Furthermore, longitudinal and radial sections through the cankers revealed gray-to-brown xylem discoloration. One symptomatic 3-year-old plant was randomly selected and from the necrotic margin of one canker previously surface-sterilized with 3% sodium hypochlorite and rinsed, four 2-mm-wide chips were placed on malt extract agar (MEA) and incubated at 21 ± 1°C in the dark. Among a variety of microorganisms, after 19 days, slow-growing colonies (mean radius of 12 mm) appeared that were effuse, cottony, and often fulvous brown but sometimes dull white with occasional gray-to-dark gray patches. The purified isolate was then transferred to the same medium at 4 ± 1°C in the dark, and after 11 days, hyaline-to-dark gray phialides were observed producing numerous conidia in slimy droplets and sometimes in chains. Phialophores measured 8.6 to 21.0 (15.1) μm long (n = 20), 4.2 to 13.4 (8.8) × 3.6 to 5.5 (4.7) μm at the base, and 5.2 to 8.7 (6.5) × 2.5 to 3.1 (2.8) μm at the collarette; conidia measured 2.8 to 4.2 (3.4) × 1.9 to 2.5 (2.2) μm (n = 40); and first formed conidia measured 5.5 to 6.5 (5.9) × 1.8 to 2.5 (2.1) μm (n = 20). These morphological characteristics matched Kowalski's (1) description of C. fraxinea. In August of 2009, the fungal isolate was used to test pathogenicity with current year shoots of 25 6-year-old (150 to 210 cm high) asymptomatic common ash trees under quarantine conditions (Slovenian Forestry Institute's experimental plots). For every plant, the bark of the main shoot (10 to 13 mm in diameter) was wounded with a 6-mm-diameter cork borer. Twenty saplings were inoculated with one 6-mm-diameter mycelial plug obtained from the margin of a 26-day-old culture (MEA), while five saplings were inoculated with sterile MEA plugs. All wounds were sealed with Parafilm and aluminum foil. After 28 days, all plants inoculated with the C. fraxinea showed bark lesions (2 to 39 mm long, mean 7 mm) and wood discoloration (6 to 85 mm long, mean 22 mm) from which the pathogen was reisolated. These symptoms were absent from controls and the pathogen was never reisolated. To our knowledge, this is the first report of C. fraxinea in Italy. Investigations on its presence in all Fraxinus species naturally growing in the investigated area and in the nearest regions are in progress. The obtained isolate is preserved in both Padova and Ljubljana herbaria as CFIT01. References: (1) T. Kowalski. For. Pathol. 36:264, 2006. (2) T. Kowalski and O. Holdenrieder. For. Pathol. 39:1, 2009. (3) T. Kowalski and O. Holdenrieder. For. Pathol. 39:304, 2009.


Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 221-221 ◽  
Author(s):  
C. Pintos Varela ◽  
V. Redondo Fernández ◽  
J. P. Mansilla Vázquez ◽  
O. Aguín Casal

During the conducting of Phytophthora ramorum surveys at Galician public parks (northwestern Spain) in 2010, established Rhododendron spp. plants were observed to be exhibiting leaf spots and necrosis, shoot blight, and cankers and dieback of shoots and branches. Branches and leaves of affected rhododendrons contained pseudothecia with bitunicate asci and hyaline pseudoparaphyses, and pycnidia were observed within the same stromatic masses. Symptomatic samples were disinfested in 0.5% sodium hypochlorite for 3 min. Tissues were cut from the margin of lesions, placed onto malt extract agar amended with streptomycin (25 μg ml–1), and incubated at 25°C in the dark. Cultures displaying morphological characteristics associated with Botryosphaeriaceae species were subcultured on 2% water agar with sterilized Pinus pinaster needles as a substrate and incubated at 25°C under near-UV light to encourage pycnidial production (1). Single conidial cultures gave rise to two distinct colonies on potato dextrose agar (PDA) at 25°C. In type 1, isolates produced a sparse, aerial mycelium and a characteristic yellow pigment that was more intense after 3 days, thereafter becoming violaceous and gradually turning dark gray. Growth occurred in the range of 4 to 38°C with an optimum at 29°C. Conidia were hyaline, fusiform, aseptate, thin walled, and averaged 21.1 (14.3 to 25.0) × 5.7 (4.3 to 6.8) μm with a length/width (L/W) ratio of 3.7 ± 0.4 (n = 100). On the basis of these characteristics, isolates were identified as Neofusicoccum luteum (1,3). Colonies of type 2 produced a dense, white-to-yellowish mycelium that rapidly became gray followed by marked diurnal zonation. Mycelial growth occurred in the range of 6 to 38°C with an optimum at 29 to 30°C. Conidia were hyaline, elliptical or fusiform, aseptate, thin walled, and averaging 18.3 (14.1 to 20.7) × 5.8 (4.6 to 7.0) μm with a L/W ratio of 3.2 ± 0.4 (n = 100). These isolates were identified as N. parvum (1,2). Identity was confirmed by DNA sequences analysis of internal transcribed spacer (ITS) regions. Comparison of the sequences of type 1 and 2 showed 100% homology with N. luteum and N. parvum (GenBank Accession Nos. EU673311 and GU251146, respectively). Representative sequences were deposited at GenBank (Accession Nos. HQ197352 and HQ197351). Pathogenicity of each isolate of N. luteum and N. parvum was confirmed by inoculating four 3-year-old Rhododendron spp. seedlings grown in pots. Shallow cuts were made in three branches of each plant. A colonized 6-mm agar plug, removed from the margin of an actively growing colony, was inserted beneath the flap and sealed with Parafilm. Four control seedlings received only sterile PDA agar plugs. Plants were maintained at 26°C and 70% humidity for 21 days. Inoculated plants began showing symptoms after 3 days. Necrosis progressed quickly and bidirectionally from the wound, resulting in death of leaves and wilting of shoots. N. luteum and N. parvum were reisolated from all inoculated plants but not from the controls. To our knowledge, this is the first report of N. luteum and N. parvum on Rhododendron spp. in Spain. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) S. R. Pennycook et al. Mycotaxon 24:445, 1985. (3) A .J. L. Phillips et al. Sydowia 54:59, 2002.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1285-1285 ◽  
Author(s):  
C. Barrau ◽  
B. de los Santos ◽  
F. Romero

An anthracnose disease was observed affecting leaves of high-bush blueberry plants (Vaccinium corymbosum L. ‘Sharpblue’) in small areas within two production fields in Huelva Province of Andalucía, in southwestern Spain. The first symptoms observed in late spring were circular, necrotic lesions, red to salmon in color, and ranging from 3 to 20 mm in diameter. Later, lesions became salmon colored in the center with a brilliant red halo. Fungal isolations were made from the lesions. Infected tissues were surface-disinfected in 1% sodium hypochlorite for 1 min, blotted dry on sterile filter paper, and plated on 2% water agar. The plates were incubated at 25°C for 5 to 10 days. Fungal colonies isolated from the tissues were transferred to potato dextrose yeast agar (PDYA). Only one fungal species was consistently isolated from affected leaf tissues and was identified as Colletotrichum acutatum J.H. Simmonds based on morphological characteristics (2) and enzyme-linked immunosorbent assay (1). Colonies of the fungus on PDYA showed a white-to-gray dense mycelium covered with salmon-colored spore masses. The reverse of the plates was a pink-salmon color. Colony diameter on PDYA averaged 50 mm after 7 days at 25°C. Conidia were hyaline, aseptate, fusiform to cylindrical, and 12.5 × 3.2 μm. Inoculation of leaves and fruits of blueberry cv. Misty with a conidial suspension (106 conidia per ml) of C. acutatum produced lesions on the leaves and fruits similar to those observed on diseased plants in the field. The pathogen was isolated from lesions on inoculated plants. To our knowledge, this is the first report of C. acutatum in high-bush blueberry plants in Spain. References: (1) T. A. Cooke et al. EPPO Bull. 25:57, 1995. (2) B. C. Sutton. The Coelomycetes. CMI, Kew, England, 1980.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 992-992 ◽  
Author(s):  
Y. L. Li ◽  
Z. Zhou ◽  
W. Lu ◽  
J. R. Ye

Sansevieria trifasciata originates from tropical West Africa. It is widely planted as a potted ornamental in China for improving indoor air quality (1). In February 2011, leaves of S. trifasciata plants in an ornamental market of Anle, Luoyang City, China, were observed with sunken brown lesions up to 20 mm in diameter, and with black pycnidia present in the lesions. One hundred potted plants were examined, with disease incidence at 20%. The symptomatic leaves affected the ornamental value of the plants. A section of leaf tissue from the periphery of two lesions from a plant was cut into 1 cm2 pieces, soaked in 70% ethanol for 30 s, sterilized with 0.1% HgCl2 for 2 min, then washed five times in sterilized distilled water. The pieces were incubated at 28°C on potato dextrose agar (PDA). Colonies of two isolates were brown with submerged hyphae, and aerial mycelium was rare. Abundant and scattered pycnidia were reniform, dark brown, and 200 to 350 × 100 to 250 μm. There were two types of setae on the pycnidia: 1) dark brown setae with inward curved tops, and 2) straight, brown setae. Conidia were hyaline, unicellular, cylindrical, and 3.75 to 6.25 × 1.25 to 2.50 μm. Morphological characteristics suggested the two fungal isolates were a Chaetomella sp. To confirm pathogenicity, six mature leaves of a potted S. trifasciata plant were wounded with a sterile pin after wiping each leaf surface with 70% ethanol and washing each leaf with sterilized distilled water three times. A 0.5 cm mycelial disk cut from the margin of a 5-day-old colony on a PDA plate was placed on each pin-wounded leaf, ensuring that the mycelium was in contact with the wound. Non-colonized PDA discs were placed on pin-wounded leaves as the control treatment. Each of two fungal isolates was inoculated on two leaves, and the control treatment was done similarly on two leaves. The inoculated plant was placed in a growth chamber at 28°C with 80% relative humidity. After 7 days, inoculated leaves produced brown lesions with black pycnidia, but no symptoms developed on the control leaves. A Chaetomella sp. was reisolated from the lesions of inoculated leaves, but not from the control leaves. An additional two potted plants were inoculated using the same methods as replications of the experiment, with identical results. To confirm the fungal identification, the internal transcribed spacer (ITS) region of rDNA of the two isolates was amplified using primers ITS1 and ITS4 (2) and sequenced. The sequences were identical (GenBank Accession No. KC515097) and exhibited 99% nucleotide identity to the ITS sequence of an isolate of Chaetomella sp. in GenBank (AJ301961). To our knowledge, this is the first report of a leaf spot of S. trifasciata caused by Chaetomella sp. in China as well as anywhere in the world. References: (1) X. Z. Guo et al. Subtropical Crops Commun. Zhejiang 27:9, 2005. (2) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 375-375 ◽  
Author(s):  
X. F. Wang ◽  
Z. A. Li ◽  
K. Z. Tang ◽  
C. Y. Zhou ◽  
L. Yi

Brown spot of citrus is considered a major problem on the fruit of many citrus cultivars grown for fresh markets including tangerines (Citrus reticulata) and their hybrids. It causes lesions on leaves, stems, and fruit and reduces yield and fruit quality (2). In 2003 in southern Wenshan Municipality, Yunnan Province in China, sporadic occurrence of Alternaria brown spot was observed on Tangfang mandarin, a local citrus cultivar identified preliminarily as a kind of mandarin hybrid. From 2006 to 2008, nearly 80% of local orchards were infected with the disease. Fruit symptoms typical of Alternaria brown spot ranging from light brown, slightly depressed spots to circular and dark brown areas were observed. Leaves showed small, brown, circular spots and irregular blighted areas with characteristic yellow halos. Tissues from the margin of fruit spots or infected leaf parts of eight different trees were surface sterilized in 1.5% sodium hypochlorite for 1 min, plated on potato dextrose agar (PDA), and then incubated at 27°C in the dark for 1 week. Dark brown mycelia and pigmented septate conidia with lengths of 10 to 35 μm and widths of 5 to 13 μm were produced. On the basis of conidial morphological characteristics, the pathogen was identified as Alternaria alternata (Fr.:Fr.) Keissl (1). Detached young healthy leaves of ‘Minneola’ tangelo (C. reticulata × C. paradisi) were sprayed with a conidial suspension of 105 conidia per ml and incubated in a moist chamber at 27°C. A control treatment with an equal number of leaves was sprayed with distilled water only. After 48 h, seven of these isolates caused necrotic lesions on detached leaves, characteristic of the disease, whereas there were no symptoms on leaves of the water control. Pure cultures were recovered on PDA from symptomatic tissues and the morphological characteristics of the conidia closely fit the description of A. alternata, confirming Koch's postulates. Currently, the distribution of Alternaria brown spot of citrus is confined to southern Wenshan Municipality in Yunnan Province where it is a serious disease problem on the most important commercial cultivar in this region. The identification of the pathogen now allows for appropriate field management and control measures. To our knowledge, this is the first report of Alternaria brown spot of citrus in China. References: (1) Z. Solel. Plant Pathol. 40:145, 1991. (2) J. O. Whiteside. Plant Dis. Rep. 60:326, 1976.


Sign in / Sign up

Export Citation Format

Share Document