scholarly journals Banana Streak Badnavirus and Cucumber Mosaic Cucumovirus in Farmers' Fields in Zanzibar

Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1403-1403 ◽  
Author(s):  
D. R. Vuylsteke ◽  
J. d'A. Hughes ◽  
K. Rajab

Symptoms resembling those of viral leaf streak disease, caused by banana streak badnavirus (BSV), were observed in May 1998 on two banana (Musa spp.) landraces grown from farmer-collected propagules in a farmer's field at Kiboje Uchukuni, Zanzibar. Those showing symptoms were “French plantain” cv. Mzuzu and “Cavendish” banana cv. Mtwike. Leaf symptoms were expressed as chlorotic streaks and blotches. Leaf samples were indexed by immunosorbent electron microscopy with BSV and cucumber mosaic cucumovirus (CMV) antibodies, using partially purified preparations (2). The two landraces tested positive for BSV, corroborating the occurrence of BSV in Zanzibar. In addition, cv. Mtwike was found to be coinfected with CMV. No other viruslike particles were seen by electron microscopy. Although BSV has been reported in Zanzibar (1), it was only from symptoms in the Musa field genebank at Kizimbani Research Station. BSV has been found in many Musa collections worldwide, particularly in the widely grown cv. Mysore. This report confirms the presence of BSV in farmers' fields and is also the first report of CMV infecting banana in Zanzibar. References: (1) A. J. Dabek and J. M. Waller. Trop. Pest Management 36:157, 1990. (2) M. Diekmann and C. A. J. Putter. Musa spp. FAO/IPGRI Technical Guidelines for the Safe Movement of Germplasm No. 15. FAO/IPGRI, Rome, Italy, 1996.

Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 550-550 ◽  
Author(s):  
Hong-Ji Su ◽  
Ting-Hsuan Hung ◽  
Meng-Ling Wu

Banana (Musa sapientam L.) is an economically important crop for both export and local consumption in Taiwan. Recently, leaf symptoms characteristic of banana streak disease (1) were found on banana cv. Mysore (AAB group) introduced from Australia in the germ plasm collection of the Taiwan Banana Research Institute. The citrus mealybug (Planococus citri) has been shown to transmit banana streak virus (BSV) but not banana bunchy top virus or cucumber mosaic virus (CMV) (2). When mealybugs were fed on leaves of diseased Mysore banana and transferred to healthy banana cv. Cavendish seedlings in a growth chamber, the latter developed fine chlorotic streaks characteristic of symptoms caused by BSV within 1 to 3 months. Some chlorotic streaks became necrotic. BSV was detected in diseased but not healthy leaves of Mysore and Cavendish bananas by polymerase chain reaction (PCR) with primer pairs of BSV provided by J. E. Thomas of Queensland Department of Primary Industries. Subsequently, fine chlorotic streaks were observed in leaves of Cavendish banana in several fields in southern Taiwan. Some of these diseased plants developed severe leaf necrosis, causing heart rot of spindle leaves characteristic of symptoms caused by CMV. Presence of BSV in these plants was verified by PCR assay. However, CMV was also detected by double antibody sandwich-enzyme-linked immunosorbent assay with a monoclonal antibody to CMV, indicating that these plants were simultaneously infected by both viruses. This is the first report of BSV infecting Musa spp. in Taiwan. References: (1) B. E. L. Lockhart. Phytopathology 76:995, 1986. (2) B. E. L. Lockhart. 1995 Food & Fertilizer Technol. Center (ASPAC) Tech. Bull. 143. 11 pp.


Author(s):  
Dana MALSACHI ◽  
Felicia MUREŞANU ◽  
Adina IVAS ◽  
Ignea MIRCEA ◽  
Tritean NICOLAE ◽  
...  

Elaborated in 2008-2010, at Agricultural Research Station Turda, the paper presents the increasing of main pests abundance and the extension risk of pests attack on the cultural technologies with minimum soil tillage and no tillage system, on the agro-ecological changes in Transylvania. The paper pointed out the importance of adequate new soil conservative technologies of minimum tillage and no tillage system with a special pests control strategy, comprising: efficiency insecticides and application moments, cultural measures, entomophagous and biodiversity conservation and use, environmental protection.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ahmed Sabra ◽  
Mohammed Ali Al Saleh ◽  
I. M. Alshahwan ◽  
Mahmoud A. Amer

Tomato (Solanum lycopersicum L.) is the most economically important member of family Solanaceae and cultivated worldwide and one of the most important crops in Saudi Arabia. The aim of this study is screening of the most common viruses in Riyadh region and identified the presence of tomato brown rugose fruit virus (ToBRFV) in Saudi Arabia. In January 2021, unusual fruit and leaf symptoms were observed in several greenhouses cultivating tomatoes commercially in Riyadh Region, Saudi Arabia. Fruit symptoms showed irregular brown spots, deformation, and yellowing spots which render the fruits non-marketable, while the leaf symptoms included mottling, mosaic with dark green wrinkled and narrowing. These plants presented the symptoms similar to those described in other studies (Salem et al., 2015, Luria et al., 2017). A total 45 Symptomatic leaf samples were collected and tested serologically against suspected important tomato viruses including: tomato chlorosis virus, tomato spotted wilt virus, tomato yellow leaf curl virus, tomato chlorotic spot virus, tomato aspermy virus, tomato bushy stunt virus, tomato black ring virus, tomato ringspot virus, tomato mosaic virus, pepino mosaic virus and ToBRFV using Enzyme linked immunosorbent assay (ELISA) test (LOEWE®, Biochemica, Germany), according to the manufacturers' instructions. The obtained results showed that 84.4% (38/45) of symptomatic tomato samples were infected with at least one of the detected viruses. The obtained results showed that 55.5% (25/45) of symptomatic tomato samples were found positive to ToBRFV, three out of 25 samples (12%) were singly infected, however 22 out of 45 (48.8%) had mixed infection between ToBRFV and with at least one of tested viruses. A sample with a single infection of ToBRFV was mechanically inoculated into different host range including: Chenopodium amaranticolor, C. quinoa, C. album, C. glaucum, Nicotiana glutinosa, N. benthamiana, N. tabacum, N. occidentalis, Gomphrena globosa, Datura stramonium, Solanum lycopersicum, S. nigrum, petunia hybrida and symptoms were observed weekly and the systemic presence of the ToBRFV was confirmed by RT-PCR and partial nucleotide sequence. A Total RNA was extracted from DAS-ELISA positive samples using Thermo Scientific GeneJET Plant RNA Purification Mini Kit. Reverse transcription-Polymerase chain reaction (RT-PCR) was carried out using specific primers F-3666 (5´-ATGGTACGAACGGCGGCAG-3´) and R-4718 (5´-CAATCCTTGATGTG TTTAGCAC-3´) which amplified a fragment of 1052 bp of Open Reading Frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp). (Luria et al. 2017). RT-PCR products were analyzed using 1.5 % agarose gel electrophoresis. RT-PCR products were sequenced in both directions by Macrogen Inc. Seoul, South Korea. Partial nucleotide sequences obtained from selected samples were submitted to GenBank and assigned the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities ranged between 98.99 % to 99.50 % among them and 98.87-99.87 % identity with ToBRFV isolates from Palestine (MK881101 and MN013187), Turkey (MK888980, MT118666, MN065184, and MT107885), United Kingdom (MN182533), Egypt (MN882030 and MN882031), Jordan (KT383474), USA (MT002973), Mexico (MK273183 and MK273190), Canada (MN549395) and Netherlands (MN882017, MN882018, MN882042, MN882023, MN882024, and MN882045). To our knowledge, this is the first report of occurrence of ToBRFV infecting tomato in Saudi Arabia which suggests its likely introduction by commercial seeds from countries reported this virus and spread in greenhouses through mechanical means. The author(s) declare no conflict of interest. Keywords: Tomato brown rugose fruit virus, tomato, ELISA, RT-PCR, Saudi Arabia References: Luria N, et al., 2017. PLoS ONE 12(1): 1-19. Salem N, et al., 2015. Archives of Virology 161(2): 503-506. Fig. 1. Symptoms caused by ToBRFV showing irregular brown spots, deformation, yellowing spots on fruits (A, B, C) and bubbling and mottling, mosaic with dark green wrinkled and narrowing on leaf (D).


2001 ◽  
Vol 7 (S2) ◽  
pp. 534-535
Author(s):  
G. Vrdoljak ◽  
G. Sposito

In the hierarchical model of soil structure, the lowest scale of structure is the combination of clays < 0.2 um diameter to form 2 um domains. to investigate the basis for soil structure, two highly weathered soils from Brazil (Oxisols) were selected and the < 2 um size fraction extracted by sedimentation for analysis. The first soil used in this study, classified as Xanthic Hapludox, was collected in 1991 at an EMBRAPA research station outside of Manaus, Brazil from a tropical forest site collected from the 0-8 cm depth. The second soil (0-20 cm depth) was sampled from a topographically flat area inside the Brasilia National Park, Brasilia D.F. Brazil by Dr. Flavio Vasconcelos.The samples were analyzed by NMR spectroscopy, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. NMR spectroscopy revealed the organic materials within this size fraction consisted predominantly of polysaccharides.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1484-1484 ◽  
Author(s):  
Z. Perez-Egusquiza ◽  
L. W. Liefting ◽  
S. Veerakone ◽  
G. R. G. Clover ◽  
M. Ciuffo

The genus Fuchsia has 110 known species and numerous hybrids. These ornamental plants with brightly colored flowers originate from Central and South America, New Zealand, and Tahiti, but a wider variety are now grown all over the world. Few viruses have been reported in Fuchsia spp.: a carlavirus, Fuchsia latent virus (FLV) (1–3), a cucumovirus, Cucumber mosaic virus (CMV) (3), and two tospoviruses, Impatiens necrotic spot virus (INSV) and Tomato spotted wilt virus (TSWV) (4). In August 2009, five plants, each representing a different cultivar of Fuchsia hybrid, from home gardens in the Auckland and Southland regions of New Zealand, displayed variable symptoms including mild chlorosis, mild mottle, or purple spots on leaves. Plants tested negative for CMV, INSV, and TSWV using commercial ImmunoStrips (Agdia Inc., Elkhart, IN); however, flexuous particles of ~650 to 700 nm were found by electron microscopy in all samples. Local lesions were also observed on Chenopodium quinoa plants 4 weeks after sap inoculation. Total RNA was extracted from all plants with a RNeasy Plant Mini Kit (Qiagen Inc., Doncaster, Australia) and tested by reverse transcription (RT)-PCR using two generic sets of primers (R. van der Vlugt, personal communication) designed to amplify fragments of ~730 and 550 bp of the replicase and coat protein genes of carlaviruses, respectively. Amplicons of the expected size were obtained for all samples, cloned, and at least three clones per sample were sequenced. No differences within clones from the same samples were observed (GenBank Accession Nos. HQ197672 to HQ197681). A BLASTn search of the viral replicase fragment showed the highest nucleotide identity (76%) to Potato rough dwarf virus (PRDV) (EU020009), whereas the coat protein fragment had maximum nucleotide identity (70 to 72%) to PRDV (EU020009 and DQ640311) and Potato virus P (DQ516055). Sequences obtained were also pairwise aligned using the MegAlign program (DNASTAR, Inc., Madison, WI) and results showed that the isolates had 83 to 97% identity to each other within each genome region. Further sequences (HQ197925 and HQ197926) were obtained from a Fuchsia plant originating from Belgium, a BLASTn analysis showed high nucleotide identity (84 to 99%) to the New Zealand isolates. The low genetic identity to other Carlavirus members suggests that these isolates belong to a different species from those previously sequenced. On the basis of electron microscopy and herbaceous indexing, the isolates had similar characteristics to a carlavirus reported from Fuchsia in Italy (1) and FLV reported in Canada (2). The Italian carlavirus isolate was obtained and tested with the same primers by RT-PCR. Pairwise analysis of the Italian sequences (HQ197927 and HQ197928) with the New Zealand and Belgian sequences showed between 84 and 95% similarity within each genome region. These results suggest that the carlavirus infecting these plants is the same virus, possibly FLV. To our knowledge, this is the first report of this carlavirus infecting Fuchsia spp. in New Zealand, but the virus has probably been present for some time in this country and is likely to be distributed worldwide. References: (1) G. Dellavalle et al. Acta Hortic. 432:332, 1996. (2) L. J. John et al. Acta Hortic. 110:195, 1980. (3) P. Roggero et al. Plant Pathol. 49:802, 2000. (4) R. Wick and B. Dicklow. Diseases in Fuchsia. Common Names of Plant Diseases. Online publication. The American Phytopathological Society, St. Paul, MN, 1999.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 693-693 ◽  
Author(s):  
D. L. Smith ◽  
C. Fritz ◽  
Q. Watson ◽  
D. K. Willis ◽  
T. L. German ◽  
...  

Several viral diseases of soybean (Glycine max) have been identified in the north-central U.S. soybean production area, which includes Wisconsin and Iowa (2). Previously, Soybean vein necrosis disease (SVND) caused by Soybean vein necrosis-associated virus was reported in Arkansas, Tennessee, and other southern states (4). In September 2012, soybean plants with symptoms similar to those reported for SVND (4) were observed in fields across Wisconsin and Iowa. Symptoms included leaf-vein and leaf chlorosis, followed by necrosis of the leaf veins and eventually necrosis of the entire leaf. Six samples with symptoms indicative of SVNaV were collected from research plots located at the West Madison Agricultural Research Station located in Madison, WI. An additional three samples were collected from three locations in central Iowa. Total RNA extracted from each sample using the Trizol Plus RNA purification kit (Invitrogen, Carlsbad, CA) was used to generate complementary DNA (cDNA) using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA) following the manufacturers' suggested protocols. The resulting cDNA was used as template in a PCR with SVNaV-specific primers, SVNaV-f1 and SVNaV-r1 (3). PCRs of two of the six Wisconsin samples and two Iowa samples were positive. Amplification products were not detected in the other five samples. The amplification products from the four strongly positive samples were purified using the Wizard SV Gel and PCR Purification Kit (Promega, Madison, WI) following the manufacturer's suggested protocol and were subjected to automated sequencing (University of Wisconsin Biotechnology Center or Iowa State University, DNA Sequencing Facilities). BLASTn (1) alignments of the 915-bp consensus sequence revealed 98% and >99% identity of the Wisconsin and Iowa samples, respectively, with the ‘S’ segment of the SVNaV ‘TN’ isolate (GenBank Accession No. GU722319.1). Samples from the same leaf tissue used above, were subjected to serological tests for SVNaV using antigen coated-indirect ELISA (3). Asymptomatic soybeans grown in the greenhouse were used as a source of leaves for negative controls. These tests confirmed the presence of SVNaV in eight symptomatic soybean leaflets collected in Wisconsin and Iowa. The asymptomatic control and one Iowa sample, which was also PCR-negative, were also negative by serological testing. Six additional samples from soybean fields in as many Wisconsin counties (Fond Du Lac, Grant, Green, Juneau, Richland, Rock) tested positive for SVNaV using specific primers that amplify the ‘L’ segment (4). The sequenced amplification products (297-bp) showed 99 to 100% homology to the L segment of the TN isolate (GU722317.1). To our knowledge, this is the first report of SVNaV associated with soybean and the first report of SVND in Wisconsin and Iowa. Considering that little is known about SVNaV, it is assumed that it is like other Tospoviruses and can cause significant yield loss (4). Soybean is a major cash crop for Wisconsin and Iowa, and infection by SVNaV could result in potential yield loss in years where epidemics begin early and at a high initial inoculum level. References: (1) S. F. Altschul et al. J. Mol. Biol. 215:403, 1990. (2) G. L. Hartman et al. Compendium of Soybean Diseases, 4th ed, 1999. (3) B. Khatabi et al. Eur. J. Plant Pathol. 133:783, 2012. (4) J. Zhou et al. Virus Genes 43:289, 2011.


1982 ◽  
Vol 60 (6) ◽  
pp. 825-837 ◽  
Author(s):  
Jane Robb ◽  
Alexandra Smith ◽  
Lloyd Busch

Plants that are infected with fungi of the species Verticillium frequently develop foliar disease symptoms which may include one or more of the following: flaccidity, drying, chlorosis leading to necrosis, vascular browning, epinasty, and leaf abscission. A number of ultrastructural and chemical alterations occur in the vascular tissues of such leaves: deposition of brown pigments, coating of xylem vessel walls with abnormal material (i.e., lipid-rich coatings or fibrillar coatings), plugging of xylem vessels with gums, gels or tyloses, degeneration of parenchyma cells, and accumulation of abnormal electron dense materials in primary and secondary cell walls. Different host–parasite combinations exhibit different leaf symptoms and different cytological alterations. The purpose of the present survey was to determine whether the extent of any of the possible vascular alterations in leaves could be correlated with the wilting tendency of the host.Chrysanthemums, snapdragons, eggplants, sunflowers, potatoes, sycamore maples and hedge maples were infected with V. dahliae; alfalfa and hops were infected with V. albo-atrum. When leaf symptoms were well advanced, samples were taken from the major lateral leaf veins and were prepared for light (LM) and transmission electron microscopy (TEM) or scanning electron microscopy (SEM). The various types of alterations in the vascular tissues were identified by a correlated LM–TEM method and (or) SEM analysis and for each sample vein the proportion of vessels affected by each type of alteration was calculated. Four leaf samples, each from different plants, were analysed for each host. The visual symptoms, including vascular browning, were estimated subjectively. The degree of leaf flaccidity was correlated positively with the proportion of lipid-coated vessels and inversely with the degree of vascular browning. No other correlations were observed.


Sign in / Sign up

Export Citation Format

Share Document