Wilts caused by Verticillium species. A cytological survey of vascular alterations in leaves

1982 ◽  
Vol 60 (6) ◽  
pp. 825-837 ◽  
Author(s):  
Jane Robb ◽  
Alexandra Smith ◽  
Lloyd Busch

Plants that are infected with fungi of the species Verticillium frequently develop foliar disease symptoms which may include one or more of the following: flaccidity, drying, chlorosis leading to necrosis, vascular browning, epinasty, and leaf abscission. A number of ultrastructural and chemical alterations occur in the vascular tissues of such leaves: deposition of brown pigments, coating of xylem vessel walls with abnormal material (i.e., lipid-rich coatings or fibrillar coatings), plugging of xylem vessels with gums, gels or tyloses, degeneration of parenchyma cells, and accumulation of abnormal electron dense materials in primary and secondary cell walls. Different host–parasite combinations exhibit different leaf symptoms and different cytological alterations. The purpose of the present survey was to determine whether the extent of any of the possible vascular alterations in leaves could be correlated with the wilting tendency of the host.Chrysanthemums, snapdragons, eggplants, sunflowers, potatoes, sycamore maples and hedge maples were infected with V. dahliae; alfalfa and hops were infected with V. albo-atrum. When leaf symptoms were well advanced, samples were taken from the major lateral leaf veins and were prepared for light (LM) and transmission electron microscopy (TEM) or scanning electron microscopy (SEM). The various types of alterations in the vascular tissues were identified by a correlated LM–TEM method and (or) SEM analysis and for each sample vein the proportion of vessels affected by each type of alteration was calculated. Four leaf samples, each from different plants, were analysed for each host. The visual symptoms, including vascular browning, were estimated subjectively. The degree of leaf flaccidity was correlated positively with the proportion of lipid-coated vessels and inversely with the degree of vascular browning. No other correlations were observed.

1992 ◽  
Vol 70 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
James P. Braselton

Sporogenic (cystogenous) stages of development of Spongospora subterranea (Wallroth) Lagerheim f.sp. subterranea Tomlinson infecting potato tubers were examined with transmission electron microscopy. Volume of nuclei in transitional Plasmodia was 28.2 ± 8.3 μm3. Serial section analysis revealed 37 synaptonemal complexes, hence the haploid chromosome number was considered to be 37. Total length of synaptonemal complexes per nucleus was 74.6 ± 1.4 μm, with individual synaptonemal complexes ranging in length from 1.34 ± 0.07 μm to 3.48 ± 0.17 μm. No polycomplexes were observed in transitional nuclei. Electron-opaque thickenings of lateral elements occurred irregularly. Additional ultrastructural features of sporogenic plasmodia included end-to-end paired centrioles defining the poles of the nuclei and a host–parasite boundary of a single unit membrane. Key words: karyotype, Plasmodiophoromycetes, Spongospora, synaptonemal complex.


Author(s):  
Hui Wang ◽  
Letian Wang ◽  
Shanyu Meng ◽  
Hanxue Lin ◽  
Melanie Correll ◽  
...  

The compatibility of graphene or graphene oxide with its dispersion medium (polymer) plays a critical role in the formation nanocomposite materials with significant property improvements. Environmentally friendly miniemulsion polymerization, which allows a formation of nanoencapsulation in an aqueous phase and high molecular weight polymer/composite production is one promising method. In this study, we screened a series of amphiphilic modifiers and found that the quaternary ammonium (ar-vinyl benzyl) trimethyl ammonium chloride (VBTAC) pending carbon double bonds could effectively modify the graphene oxide (GO) to be compatible with the organophilic monomer. After that, free radical miniemulsion polymerization could successfully synthesize stable latex of exfoliated poly (methyl methacrylate) (PMMA)/ GO nanocomposite. The final latex had an extended storage life and a relatively uniform particle size distribution. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) analysis of this latex and its films indicated successful encapsulation of exfoliated nano-dimensional graphene oxide inside a polymer matrix.


1985 ◽  
Vol 63 (4) ◽  
pp. 757-761 ◽  
Author(s):  
E. Untiedt ◽  
K. Müller

Lyophyllum palustre (Peck) Singer, a basidiomycete (Tricholomataceae) parasitizing Sphagnum, was examined for points of contact between hyphae and Sphagnum cells with the help of light microscopy, scanning electron microscopy, and transmission electron microscopy. Results indicate that the fungus attacks Sphagnum cells by penetrating cell walls and altering host cell protosplasm. In addition, the formation of additional partitioning cell walls in attacked living Sphagnum cells was observed.


2019 ◽  
Vol 113 (1) ◽  
pp. 511-517
Author(s):  
Masumeh Ziaee ◽  
Asgar Babamir-Satehi

Abstract Nanostructured silica can be used as a carrier of pesticides to enhance stability and controlled release of agrochemicals with an effective concentration on target pests. Silica nanoparticles (SNPs) were synthesized by sol–gel process and employed as a carrier of three different insecticides including deltamethrin, pyriproxyfen, and chlorpyrifos. The SNPs were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis and the insecticides-loaded in SNPs were characterized by transmission electron microscopy (TEM). The toxicity of insecticides alone and loaded in SNPs was evaluated against small and large larvae of Trogoderma granarium Everts on concrete surfaces. The immediate mortality was counted after 1, 3, and 7 d of exposure, and then surviving individuals were transferred to untreated surfaces for seven more days, with delayed mortality was recorded. Small larvae were more susceptible than large ones on all insecticide treatments. In addition, insecticides loaded in silica nanoparticles were more effective when compared with application of the insecticides alone. For immediate mortality, deltamethrin loaded in SNPs was the most efficient treatment causing 70.5% mortality on small and 55.5% mortality on large larvae after 7 d of exposure to the highest concentration. Pyriproxyfen loaded in SNPs caused low immediate mortality, but the mortality increased in delayed count indicated that the insecticide could control the larvae even after they have been removed from treated surfaces. It can be concluded that loading insecticides in SNPs could significantly increase their insecticidal efficiency, but this increase was compound-dependent.


2017 ◽  
Vol 71 (4) ◽  
pp. 19-25 ◽  
Author(s):  
Bożena Kosztyła-Hojna ◽  
Diana Moskal ◽  
Anna Kuryliszyn-Moskal ◽  
Anna Andrzejewska ◽  
Anna Łobaczuk-Sitnik ◽  
...  

Introduction. The aim of the study is the evaluation of the usefulness of High-Speed Digital Imaging (HSDI) in the diagnosis of organic dysphonia in a form of oedematous-hypertrophic changes of vocal fold mucosa, morphologically confirmed by Transmission Electron Microscopy (TEM) method in patients working with voice occupationally. Material and methods. The group consisted of 30 patients working with voice occupationally with oedematous-hypertrophic changes of vocal fold mucosa. Parameters of vocal folds vibrations were evaluated using HSDI technique with a digital HS camera, HRES Endocam Richard Wolf GmbH. The image of vocal folds was recorded with a rate of 4000 frames per second. Postoperative material of the larynx was prepared in a routine way and observed in transmission electron microscope OPTON 900–PC. Results. HSDI technique allows to assess the real vibrations of vocal folds and determine many parameters. The results of TEM in the postoperative material showed destruction of epithelial cells with severe vacuolar degeneration, the enlargement of intercellular spaces and a large number of blood vessels in the stroma, which indicates the presence of oedematous-hypertrophic changes of the larynx. Discussion. The ultrastructural assessment confirm the particular usefulness of HSDI method in the diagnosis of organic dysphonia in a form of oedematous-hypertrophic changes. Key words: High-Speed Digital Imaging, oedematous-hypertrophic changes, vocal fold mucosa, larynx


1984 ◽  
Vol 62 (7) ◽  
pp. 1327-1335 ◽  
Author(s):  
H. H. Edwards ◽  
R. V. Gessner

The incorporation of caffeine in standard transmission electron microscope fixation procedures has allowed good preservation and embedment of ectomycorrhizal short roots of English oak (Quercus robur L.). In the mantle the most conspicuous structures are cystidia which radiate outwards from the surface. These conically shaped cells have knobs at their tips and thickened cell walls. The cystidia and other outer mantle cells contain many cytoplasmic constituents, whereas the inner mantle cells are nearly devoid of cytoplasm. The mantle cells are held together by an intercellular slime network. The Hartig net cells are filled with cytoplasm and contain numerous lipid droplets. Typical dolipore septa separate the cells; however, these cells have irregularly branched shapes. The host root tissue appears little altered by the presence of the fungal symbiont. However, the root cap consists of only a few cell layers. The apical meristem is functional as evidenced by the presence of newly divided cells and microtubules lining enlarging cells.


1995 ◽  
Vol 73 (10) ◽  
pp. 1604-1610 ◽  
Author(s):  
C. Hoffert ◽  
S. Gharibian ◽  
C. Breuil ◽  
D. L. Brown

Polyclonal antibodies were raised against proteinase K and were used to immunolocalize the major extracellular proteinase of the sap-staining fungus Ophiostoma piceae (Münch) H. and P. Sydow. Immunodot blotting showed that the IgG antibodies recognized both enzymes but reacted more strongly with proteinase K than with the O. piceae proteinase. Immunogold labelling and transmission electron microscopy revealed that the O. piceae proteinase was localized in the cell walls of O. piceae grown either in liquid media or wood. Key words: Ophiostoma piceae, proteinase, immunogold labelling, transmission electron microscopy, antibody, proteinase K.


1987 ◽  
Vol 65 (12) ◽  
pp. 2483-2489 ◽  
Author(s):  
H. C. Huang ◽  
E. G. Kokko

Transmission electron microscopy revealed that hyphae of the hyperparasite Coniothyrium minitans invade sclerotia of Sclerotinia sclerotiorum, resulting in the destruction and disintegration of the sclerotium tissues. The dark-pigmented rind tissue is more resistant to invasion by the hyperparasite than the unpigmented cortical and medullary tissues. Evidence from cell wall etching at the penetration site suggests that chemical activity is required for hyphae of C. minitans to penetrate the thick, melanized rind walls. The medullary tissue infected by C. minitans shows signs of plasmolysis, aggregation, and vacuolization of cytoplasm and dissolution of the cell walls. While most of the hyphal cells of C. minitans in the infected sclerotium tissue are normal, some younger hyphal cells in the rind tissue were lysed and devoid of normal contents.


IAWA Journal ◽  
2018 ◽  
Vol 39 (1) ◽  
pp. 37-42
Author(s):  
Adya P. Singh ◽  
Andrew H.H. Wong ◽  
Yoon Soo Kim ◽  
Seung Gon Wi

Naturally durable heartwoods, where available, continue to be used as support structures in environments considered hazardous, particularly in ground contact. However, durability of heartwoods against wood decay microorganisms varies. Therefore, it is important to evaluate heartwood products for their in-service performance in order to maximise benefits derived from this valuable natural resource of limited supply. In the work presented, wood pieces from a kempas (Koompassia malaccensis) utility pole that had been placed in service in an acidic soil in Malaysia, and in time had softened at the ground-line position, were examined by light and transmission electron microscopy to evaluate the cause of deterioration.Light microscopy (LM) provided evidence of extensive attack on fibre cell walls by cavity-producing soft rot fungi. Transmission electron microscopy (TEM) revealed in greater detail the distribution and micromorphologies of cavities as well as their relationships to the fine structure of fibre cell walls, which consisted of a highly electron dense middle lamella, a moderately dense S1 layer and a multilamellar S2 layer with variable densities, reflecting differences in lignin concentration. The resistance of the moderately dense S1 layer to soft rot was a feature of particular interest and is the main focus of the work presented. The resistance appeared to be correlated with high lignification of the outermost region of the S2 wall, interfacing with the S1 layer, an unusual cell wall feature not previously described for normal wood.


1981 ◽  
Vol 8 (5) ◽  
pp. 453 ◽  
Author(s):  
A Bacic ◽  
BA Stone

Aleurone layers and cell walls from both wheat (Triticum aestivum L. cv. Insignia) and barley (Hordeum vulgare L. cv. Clipper) have been isoIated by differential centrifugation in benzene-carbon tetrachloride mixtures and by air classification. The isolated walls were obtained in sufficient quantities and purity for comprehensive chemical analysis. Morphological characteristics of the isolated aleurone layers and walls were examined by bright field, fluorescence and scanning electron microscopy and compared with their appearance in whole grains. Transmission electron microscopy of wall sections clearly showed their characteristic bilayered structure. Aniline blue-positive deposits were observed at the aleurone-starchy endosperm interfaces of both wheat and barley.


Sign in / Sign up

Export Citation Format

Share Document