scholarly journals First Report of Azalea Petal Blight Caused by Pestalotiopsis guepini in Argentina

Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 100-100 ◽  
Author(s):  
M. C. Rivera ◽  
E. R. Wright

The most important azalea (Rhododendron spp.) growing area in Argentina is located in the outskirts of Buenos Aires. A disease of the azalea flower was detected during surveys conducted during September 1998. Irregular brown spots were uniformly distributed on petals and resulted in a flower blight that did not lead to abscission of petals. Pieces of infected petals were surface-sterilized for 1 min in 2% NaOCl, plated on potato dextrose agar, and incubated at 24 ± 2°C. Pure cultures were identified as Pestalotiopsis guepini (Desmaz.) Steyaert (synamorph P. guepini Desmaz.) based on morphological characteristics (1,2). Inoculation for pathogenicity testing was carried out by spraying a conidial suspension (1 × 106 conidia per ml) on plants with previously punctured petals. Inoculated plants with unwounded flowers, as well as noninoculated controls, were included. Plants were incubated in moist chambers at 24°C. Symptoms appeared on all punctured flowers within 4 to 5 days. Petals were blighted by 9 days after inoculation and were covered with black acervuli by 12 days after inoculation. Unwounded and noninoculated controls remained symptomless. The pathogen was reisolated from inoculated flowers, completing Koch's postulates. Pathogenicity of P. guepini on azalea leaves in Argentina was reported in 1991. This is the first report of P. guepini causing disease on azalea flowers in Argentina. References: (1) J. E. M. Mordue. CMI Descr. Pathog. Fungi Bact. No. 320, 1971. (2) B. C. Sutton. 1980. The Coelomycetes. Commonwealth Mycological Institute, Kew, England.

Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1345-1345 ◽  
Author(s):  
M. C. Rivera ◽  
E. R. Wright ◽  
S. Carballo

Chinese rose (Hibiscus rosa-sinensis L.) is a shrub frequently planted in Argentina. In November 1999, dieback and anthracnose symptoms were detected on stems and leaves of plants cv. Hawaii cultivated in Buenos Aires. Disease prevalence was 50%. Pieces of infected tissues were surface-sterilized for 1 min in 2% NaOCl, plated on potato-dextrose agar and incubated at 24 ± 2°C. The isolate that was consistently recovered from diseased tissues was identified as Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., based on morphological characteristics (1,2). Teleomorph stage was not observed. Inoculation for pathogenicity testing was carried out by spraying a conidial suspension (6.5 × 106 conidia per ml) on plants with previously punctured leaves and pruned stems. Inoculated plants with unwounded tissues, as well as noninoculated controls, were included. Five replications of each treatment were done. Plants were incubated in moist chambers at 24°C. Whitish areas of 0.3 to 0.5 cm diameter surrounded by a purple halo developed on all punctured leaves within 10 days. Stem blight and leaf drop were observed. The center of the lesions was covered by black acervuli 14 days after inoculation. Unwounded and noninoculated controls remained symptomless. The pathogen was reisolated from inoculated leaves, completing Koch's postulates. This is the first report of C. gloeosporioides causing disease on Chinese rose in Argentina. References: (1) J. A. Bailey and M. J. Jeger, eds. 1992. Colletotrichum. CAB International, Surrey, England. (2) B. C. Sutton. 1980. The Coelomycetes. CMI, Kew.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 650-650 ◽  
Author(s):  
T. Thomidis ◽  
T. J. Michailides

In Greece, kiwi (Actinidia deliciosa) is mostly found in the northern part of the country where approximately 440,000 ha are grown. In the summer of 2006, a Stemphylium sp. was frequently isolated from leaves of kiwi (cv. Hayward) grown in the province of Imathia. Symptomatic leaves were covered with irregular, necrotic, brown areas. Lesions had a distinct margin that, in some cases, covered a wide part of the diseased leaves. Intense symptoms were frequently observed and associated with defoliation. This Stemphylium sp. was consistently isolated from diseased leaves onto potato dextrose agar (PDA) after surface sterilization with 0.1% chlorine solution. On the basis of morphological characteristics of mycelia, dimensions (length 20 to 29 μm and width 14 to 21 μm) and mean length/width ratio (1.42 μm) of conidia, and width and apical cell width of condiophores, the fungus was identified as Stemphylium botryosum (Wallr.) (2,3) Koch's postulates were completed in the laboratory by inoculating leaves of kiwi (cv. Hayward) with an isolate of S. botryosum originated from a symptomatic leaf of a Hayward kiwi. Twenty leaves were surface sterilized by dipping them into 0.1% chlorine solution for 2 to 3 min, washing in sterile distilled water, and allowing them to dry in a laminar flow hood. A leaf was then placed into a petri plate containing a wet, sterilized paper towel. Inoculation was made by transferring a 5-mm-diameter mycelial disc from the margins of a 7-day-old culture onto the center of each leaf surface. Petri plates were closed and incubated at 25°C with 12 h of light for 6 days. Koch's postulates were satisfied when the same S. botryosum was reisolated from 100% of inoculated leaves that developed symptoms similar to those observed in the vineyards. Leaves inoculated with a PDA plug alone (with no S. botryosum) did not develop any symptoms. Previously, Alternaria alternata was reported as the causal agent of a leaf spot pathogen of kiwi (1,4). To our knowledge, this is the first report of the occurrence of S. botryosum causing leaf blight of kiwi in Greece and worldwide. This pathogen can cause a high level of defoliation in diseased plants. References: (1) L. Corazza et al. Plant Dis. 83:487, 1999. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Mycology Institute. London, England, 1971. (3) E. G. Simmons. Mycologia 61:1, 1969. (4) C. Tsahouridou and C. C. Thanassoulopoulos. Plant Dis. 84:371, 2000


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
Y. Z. Zhu ◽  
W. J. Liao ◽  
D. X. Zou ◽  
Y. J. Wu ◽  
Y. Zhou

In May 2014, a severe leaf spot disease was observed on walnut tree (Juglans regia L.) in Hechi, Guangxi, China. Leaf spots were circular to semicircular in shape, water-soaked, later becoming grayish white in the center with a dark brown margin and bordered by a tan halo. Necrotic lesions were approximately 3 to 4 mm in diameter. Diseased leaves were collected from 10 trees in each of five commercial orchards. The diseased leaves were cut into 5 × 5 mm slices, dipped in 75% ethanol for 30 s, washed three times in sterilized water, sterilized with 0.1% (w/v) HgCl2 for 3 min, and then rinsed five times with sterile distilled water. These slices were placed on potato dextrose agar (PDA), followed by incubating at 28°C for about 3 to 4 days. Fungal isolates were obtained from these diseased tissues, transferred onto PDA plates, and incubated at 28°C. These isolates produced gray aerial mycelium and then became pinkish gray with age. Moreover, the reverse of the colony was pink. The growth rate was 8.21 to 8.41 mm per day (average = 8.29 ± 0.11, n = 3) at 28°C. The colonies produced pale orange conidial masses and were fusiform with acute ends, hyaline, sometimes guttulate, 4.02 to 5.25 × 13.71 to 15.72 μm (average = 4.56 ± 0.31 × 14.87 ± 1.14 μm, n = 25). The morphological characteristics and measurements of this fungal isolate matched the previous descriptions of Colletotrichum fioriniae (Marcelino & Gouli) R.G. Shivas & Y.P. Tan (2). Meanwhile, these characterizations were further confirmed by analysis of the partial sequence of five genes: the internal transcribed spacer (ITS) of the ribosomal DNA, beta-tubulin (β-tub) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, chitin synthase 3(CHS-1) gene, and actin (ACT) gene, with universal primers ITS4/ITS5, T1/βt2b, GDF1/GDR1, CHS1-79F/CHS1-354R, and ACT-512F/ACT-783R, respectively (1). BLAST of these DNA sequences using the nucleotide database of GenBank showed a high identify (ITS, 99%; β-tub, 99%; GAPDH, 99%; CHS-1, 99%; and ACT, 100%) with the previously deposited sequences of C. fioriniae (ITS, KF278459.1, NR111747.1; β-tub, AB744079.1, AB690809.1; GAPDH, KF944355.1, KF944354.1; CHS-1, JQ948987.1, JQ949005.1; and ACT, JQ949625.1, JQ949626.1). Koch's postulates were fulfilled by inoculating six healthy 1-year-old walnut trees in July 2014 with maximum and minimum temperatures of 33 and 26°C. The 6-mm mycelial plug, which was cut from the margin of a 5-day-old colony of the fungus on PDA, was placed onto each pin-wounded leaf, ensuring good contact between the mycelium and the wound. Non-colonized PDA plugs were placed onto pin-wounds as negative controls. Following inoculation, both inoculated and control plants were covered with plastic bags. Leaf spots, similar to those on naturally infected plants, were observed on the leaves inoculated with C. fioriniae within 5 days. No symptoms were observed on the negative control leaves. Finally, C. fioriniae was re-isolated from symptomatic leaves; in contrast, no fungus was isolated from the control, which confirmed Koch's postulates. To our knowledge, this is the first report of leaf disease on walnut caused by C. fioriniae. References: (1) L. Cai et al. Fungal Divers. 39:183, 2009. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 458-458 ◽  
Author(s):  
T. Thomidis ◽  
E. Exadaktylou

In June 2011, symptoms of postharvest rot were observed on approximately 3% of all cherries collected from commercial orchards of cultivars Lapen and Ferrovia in the prefectures of Imathia and Pella (northern Greece). Fruit were harvested in a timely manner to avoid overripeness. No wounds or other predisposing injuries were observed on the infected fruits. Lesions enlarged rapidly and separated easily from healthy tissue when pressure was applied. Infected tissues were pale and water soaked and the associated fungal spores were dark and powdery and easily liberated when mature. The fungus grew rapidly and produced black colonies on acidified potato dextrose agar (2.5 ml of 85% lactic acid per liter of nutrient medium) after 5 days at 24°C. Identification of the pathogen was based on morphological characteristics (1). The conidial head was radiate, vesicles were nearly spherical and covered with metulae and phialides (biseriate). Conidia were globose (3 to 5 μm in diameter) and usually very rough with irregular ridges, bars, and verrucae. Koch's postulates were completed in the laboratory by inoculating mature cherry fruits (cv. Lapen). The fruits were surface sterilized by dipping in 10% chloride bleach solution, allowed to dry in a laminar flow hood, and wounded with a sharp glass rod that was 2 mm in diameter. A 40-μl drop of a suspension containing 20,000 conidia per ml of water was placed on each wound. There were 20 inoculated and 20 control fruits (similarly wounded and inoculated with a 40-μl drop of sterile distilled water) in a randomized design and incubated at 24 to 26°C for 6 days. Koch's postulates were satisfied after reisolating the fungus from inoculated fruit that developed symptoms similar to those observed on fruit collected from orchards. Control fruits did not show any symptom of the disease. To our knowledge, this is the first report of the occurrence of Aspergillus niger as the causal agent of postharvest rots of cherries in Greece. Postharvest fruit rots caused by A. niger have been reported in cherry orchards of other countries around the world (2). Because this disease causes postharvest rots of cherry fruits, measures may need to be implemented to manage the pathogen. References: (1) M. A. Klich. Page 12 in: Identification of Common Aspergillus Species. Centraalbureau Voor Schimmelcultures, Utrecht, the Netherlands, 2002. (2) A. Valiuskaite et al. Phytopathol. Pol. 35:197, 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiujing Hong ◽  
Shijia Chen ◽  
linchao Wang ◽  
Bo Liu ◽  
Yuruo Yang ◽  
...  

Akebia trifoliata, a recently domesticated horticultural crop, produces delicious fruits containing multiple nutritional metabolites and has been widely used as medicinal herb in China. In June 2020, symptoms of dried-shrink disease were first observed on fruits of A. trifoliata grown in Zhangjiajie, China (110.2°E, 29.4°N) with an incidence about 10%. The infected fruits were shrunken, colored in dark brown, and withered to death (Figure S1A, B). The symptomatic fruits tissues (6 × 6 mm) were excised from three individual plants, surface-disinfested in 1% NaOCl for 30s and 70% ethanol solution for 45s, washed, dried, and plated on potato dextrose agar (PDA) containing 50 mg/L streptomycin sulfate in the dark, and incubated at 25℃ for 3 days. Subsequently, hyphal tips were transferred to PDA to obtain pure cultures. After 7 days, five pure cultures were obtained, including two identical to previously reported Colletotrichum gloeosporioides causing leaf anthracnose in A. trifoliata (Pan et al. 2020) and three unknown isolates (ZJJ-C1-1, ZJJ-C1-2, and ZJJ-C1-3). The mycelia of ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3 were white, and formed colonies of approximate 70 mm (diameter) in size at 25℃ after 7 days on potato sucrose agar (PSA) plates (Figure S1C). After 25 days, conidia were formed, solitary, globose, black, shiny, smooth, and 16-21 μm in size (average diameter = 18.22 ± 1.00 μm, n = 20) (Figure S1D). These morphological characteristics were similar to those of N. sphaerica previously reported (Li et al. 2018). To identify species of ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3, the internal transcribed spacer (ITS) region, β-tubulin (TUB2), and the translation elongation factor 1-alpha (TEF1-α) were amplified using primer pairs including ITS1/ITS4 (Vilgalys and Hester 1990), Bt-2a/Bt-2b (Glass and Donaldson 1995), and EF1-728F/EF-2 (Zhou et al. 2015), respectively. Multiple sequence analyses showed no nucleotide difference was detected among genes tested except ITS that placed three isolates into two groups (Figure S2). BLAST analyses determined that ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3 had 99.73% to N. sphaerica strains LC2705 (KY019479), 100% to LC7294 (KY019397), and 99.79-100% to LC7294 (KX985932) or LC7294 (KX985932) based on sequences of TUB2 (MW252168, MW269660, MW269661), TEF-1α (MW252169, MW269662, MW269663), and ITS (MW250235, MW250236, MW192897), respectively. These indicated three isolates belong to the same species of N. sphaerica. Based on a combined dataset of ITS, TUB2 and TEF-1α sequences, a phylogenetic tree was constructed using Maximum likelihood method through IQ-TREE (Minh et al. 2020) and confirmed that three isolates were N. sphaerica (Figure S2). Further, pathogenicity tests were performed. Briefly, healthy unwounded fruits were surface-disinfected in 0.1% NaOCl for 30s, washed, dried and needling-wounded. Then, three fruits were inoculated with 10 μl of conidial suspension (1 × 106 conidia/ml) derived from three individual isolates, with another three fruits sprayed with 10 μl sterilized water as control. The treated fruits were incubated at 25℃ in 90% humidity. After 15 days, all the three fruits inoculated with conidia displayed typical dried-shrink symptoms as those observed in the farm field (Figure S1E). The decayed tissues with mycelium and spores could be observed on the skin or vertical split of the infected fruits after 15 days’ inoculation (Figure S1F-H). Comparably, in the three control fruits, there were no dried-shrink-related symptoms displayed. The experiment was repeated twice. The re-isolated pathogens were identical to N. sphaerica determined by sequencing the ITS, TUB2 and TEF-1α. Previous reports showed N. sphaerica could cause postharvest rot disease in kiwifruits (Li et al. 2018). To our knowledge, this is the first report of N. sphaerica causing fruits dried-shrink disease in A. trifoliata in China.


Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 775-775 ◽  
Author(s):  
V. Ayala-Escobar ◽  
V. Santiago-Santiago ◽  
A. Madariaga-Navarrete ◽  
A. Castañeda-Vildozola ◽  
C. Nava-Diaz

Bougainvillea (Bougainvillea spectabilis Willd) growing in 28 gardens during 2009 showed 100% disease incidence and 3 to 7% disease severity. Bougainvilleas with white flowers were the most affected. Symptoms consisted of light brown spots with dark brown margins visible on adaxial and abaxial sides of the leaves. Spots were circular, 2 to 7 mm in diameter, often surrounded by a chlorotic halo, and delimited by major leaf veins. Single-spore cultures were incubated at 24°C under near UV light for 7 days to obtain conidia. Pathogenicity was confirmed by spraying a conidial suspension (1 × 104 spores/ml) on leaves of potted bougainvillea plants (white, red, yellow, and purple flowers), incubating the plants in a dew chamber for 48 h and maintaining them in a greenhouse (20 to 24°C). Identical symptoms to those observed at the residential gardens appeared on inoculated plants after 45 to 60 days. The fungus was reisolated from inoculated plants that showed typical symptoms. No symptoms developed on control plants treated with sterile distilled water. The fungus produced distinct stromata that were dark brown, spherical to irregular, and 20 to 24 μm in diameter. Conidiophores were simple, born from the stromata, loose to dense fascicles, brown, straight to curved, not branched, zero to two septate, 14 × 2 μm, with two to four conspicuous and darkened scars. The conidia formed singly, were brown, broad, ellipsoid, obclavate, straight to curved with three to four septa, 40 × 4 μm, and finely verrucous with thick hilum at the end. Fungal DNA from the single-spore cultures was obtained using a commercial DNA Extraction Kit (Qiagen, Valencia, CA); ribosomal DNA was amplified with ITS5 and ITS4 primers and sequenced. The sequence was deposited at the National Center for Biotechnology Information Database (GenBank Accession Nos. HQ231216 and HQ231217). The symptoms (4), morphological characteristics (1,2,4), and pathogenicity test confirm the identity of the fungus as Passalora bougainvilleae (Muntañola) Castañeda & Braun (= Cercosporidium bougainvilleae Muntañola). This pathogen has been reported from Argentina, Brazil, Brunei, China, Cuba, El Salvador, India, Indonesia, Jamaica, Japan, Thailand, the United States, and Venezuela (3). To our knowledge, this is the first report of this disease on B. spectabilis Willd in Mexico. P. bougainvilleae may become an important disease of bougainvillea plants in tropical and subtropical areas of Mexico. References: (1) U. Braun and R. R. Castañeda. Cryptogam. Bot. 2/3:289, 1991. (2) M. B. Ellis. More Dematiaceous Hypomycetes. Commonwealth Mycological Institute, Kew, Surrey, UK, 1976. (3) C. Nakashima et al. Fungal Divers. 26:257, 2007. (4) K. L. Nechet and B. A. Halfeld-Vieira. Acta Amazonica 38:585, 2008.


Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1503-1503 ◽  
Author(s):  
T. Thomidis ◽  
E. Exadaktylou

In the spring of 2010, in commercial orchards located in the Prefecture of Pieria in northern Greece, wilted shoots of kiwifruit cv. Hayward were observed. Blighted shoots took on a distinct dark color. Isolations from the lower margins of the cankers were made by plating sodium-hypochlorite-treated shoot tissue sections of approximately 3 mm on acidified (2.5 ml of 85% lactic acid per liter of nutrient medium to create a pH = 3.5 after autoclaving) potato dextrose agar. Plates were incubated at 23°C for 5 days, and a fast-growing, mouse-gray colored fungus was consistently isolated from diseased stems. Identification of the pathogen was based on morphological characteristics and confirmed by using the four random amplified polymorphic DNA primers (K19 [CAC AGG CGG A], K20 [GTG TCG CGA G], R13 [GGA CGA CAA G], and R15 [GGA CAA CGA G], suggested by Ma et al. (2). This fungus formed darkly pigmented pycnidia (170 × 155 μm), while the conidia observed in these bodies were one-celled, hyaline, ellipsoidal to fusoid with distinctly truncate bases, and measured 10.9 to 21.55 × 3.25 to 10.10 μm. The pycnidia exuded conidia in white tendrils. Koch's postulates were completed in the laboratory by inoculating 20 segments (6 cm long and 1.5 to 2 cm in diameter) of 1-year-old woody shoots of kiwifruit cv. Hayward. Using a cork borer, a 7-mm-diameter wound was created in the middle of each shoot segment by removing the bark and a 6-mm-diameter agar plug bearing mycelia from a 15-day-old culture of B. dothidea was inserted into the wound. The wound was covered with petroleum jelly and wrapped with adhesive tape to prevent desiccation. Ten control segments were similarly wounded and inoculated with an agar disk without fungal mycelium. All inoculated and noninoculated shoot segments were incubated at 25°C in moist chambers, after which the resulting necrosis was recorded. Koch's postulates were satisfied after reisolating the fungus from inoculated shoots that developed symptoms similar to those observed on shoots collected from orchards. Although B. dothidea has been previously reported to cause dieback on kiwifruit in Japan (1), to our knowledge, this is the first report of the occurrence of B. dothidea on kiwifruit in Greece. This pathogen can cause a high level of shoot blights in diseased plants and presents a significant threat to the commercial kiwifruit production in Greece. References: (1) M. Kinugawa and T. Sato. Ann. Phytopathol. Soc. Jpn. 69:373, 2003. (2) Z. Ma et al. Phytopathology 91:665, 2001.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 99-99 ◽  
Author(s):  
S. Kurt

During December 2001 to March 2002, Septoria blight of parsley was observed in approximately 500 ha of commercial parsley crops in Arsuz County, Hatay, in the Mediterranean Region of Turkey. Incidence of disease ranged from 42 to 80%. Symptoms included irregularly shaped, grayish brown spots (average 3 to 8 mm diameter) with a slightly darker brown margin of necrotic tissue that developed into tan-to-brown lesions surrounded by chlorotic halo on the leaves. Oval-shaped lesions were observed occasionally on petioles. Lesions contained erumpent, dark brown, flask-shaped pycnidia with the ostiole on the upper surface of the foliage. Thirty samples, consisting of diseased leaves and petioles of parsley, were collected from each field. Infected tissues were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile distilled water, placed on petri dishes containing potato dextrose agar (PDA), and incubated for 10 to 14 days at 25°C. The fungus formed long, multiseptate (0 to 4), hyaline, filiform conidia (14 to 29 μm × 0.5 to 1.9 μm), and short conidiophores within the pycnidia. Based on the morphological characteristics of the fungus, the pathogen was identified as Septoria petroselini Desm. (1). Monoconidial cultures of 18 isolates were prepared. Pathogenicity was confirmed by brush-inoculating slightly wounded foliage of 5- to 7- week-old parsley plants (cv. Kereviz yapragi) with a conidial suspension (106 conidia per ml of sterile water) of each isolate of S. petroselini. Control plants that were brush-inoculated with distilled water and inoculated plants were placed in clear polyethylene bags that were closed and incubated at 20°C for 48 h. The bags were removed, and plants were maintained in a dew chamber for 21 days at 65 to 70% relative humidity. Foliar symptoms developed 15 days after inoculation and appeared similar to lesions observed in the field. Yellowing and necrosis of leaves was also observed on >60% of inoculated plants. No lesions developed on the control plants. The pathogen was readily reisolated on PDA from inoculated plants. To our knowledge, this is the first report of Septoria blight of parsley in the Mediterranean Region of Turkey. Reference: (1) R. F. Cerkauskas and J. Uyenaka. Plant Dis. 74:1037, 1990.


Plant Disease ◽  
1999 ◽  
Vol 83 (1) ◽  
pp. 77-77
Author(s):  
C. Cappelli ◽  
R. Buonaurio ◽  
R. Torricelli

In May 1997, ascochyta blight incited by Ascochyta lentis Vassiljevsky was observed at an incidence of less than 5% in lentil (Lens culinaris Medik.) fields in Umbria (Central Italy). Symptoms appeared on leaves and stems as tan spots surrounded by a dark margin. Small black pycnidia that produced a pink exudate containing hyaline, 1 septate, 14.2 to 15.8 × 3.5 μm conidia under high humidity were visible in the center of the spots. The fungus was consistently isolated on potato dextrose agar from diseased leaves or stems. To satisfy Koch's postulates, a conidial suspension (106 conidia per ml) of the fungus was sprayed on leaves of 20-day-old lentil plants (landrace Castelluccio) that were maintained in a humidity chamber for 96 h after inoculation. Lesions resembling symptoms that occurred in the field were observed on plants 3 weeks after inoculation. Symptoms were not observed on control plants sprayed with water. The fungus reisolated from the diseased plants was identical to the original isolates. Based on morphological characteristics of pycnidia and conidia as well as pathogenicity, the fungus was identified as A. lentis. A deep-freeze blotter method (2) was used to detect A. lentis in lentil seeds of 20 local landraces used by Umbrian farmers and two accessions from Canada and Turkey, as well as in seed collected from infected fields. The fungus was present only in the two lentil accessions with an incidence of about 5%. Although the fungus had been isolated from Italian seed germplasm in 1986 (1), this is the first report of ascochyta blight occurring in lentil crops in Italy. The heavy rainfalls that characterize the first stage of lentil cultivation in Umbria are favorable for disease development while hot and dry conditions that usually occur during flowering and maturation prevent the dissemination of inoculum and the infection of the seeds. For these reasons, some Umbrian areas could be more suitable for production of ascochyta-free lentil seeds. References: (1) W. J. Kaiser and R. M. Hannan. Phytopathology 76:355, 1986. (2) T. Limonard. Proc. Int. Seed Test. Assoc. 33:343, 1968.


Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1551-1551 ◽  
Author(s):  
T. J. Michailides ◽  
T. Thomidis

In the summer of 2005, the fungus Phomopsis amygdali (Del.) Tuset & Portilla was frequently isolated from decayed peaches (Prunus persica cv. Andross) grown in the province of Imathia, Greece. Fruit infected by P. amygdali developed gray-to-brown decay lesions with white mycelium forming on the surface of lesions. Identification of the pathogen was based on morphological characteristics. Dark-pigmented pycnidia (flask-shaped, conidia-bearing fruiting bodies) were produced over the surface of potato dextrose agar. The pycnidia exuded conidia in white tendrils 7 days later. Koch's postulates were completed in the laboratory by inoculating mature and immature cv. Andross peach fruits with an isolate of P. amygdali isolated from decayed cv. Andross peaches. Thirty peach fruit were surface sterilized by dipping them into 0.1% chlorine solution and allowing them to dry in a laminar flow hood. The peach fruit were wounded with a 2-mm diameter glass rod and a 40-μl drop of 5 × 105 conidia of P. amygdali per milliliter suspension was applied to the wound. Thirty control fruits were similarly wounded and inoculated with a 40-μl drop of sterile water. All inoculated and noninoculated fruit were incubated at 24 to 26°C for 7 days. Koch's postulates were satisfied when the same fungus was reisolated from 100% of inoculated mature and immature fruit that developed symptoms similar to diseased fruit collected from orchards. Although P. amygdali has been previously reported as a causal agent of canker disease (2) and fruit rots of peaches (1) in other countries, to our knowledge, this is the first report of the occurrence of P. amygdali causing a fruit rot of peaches in Greece. References: (1) Y. Ko and S. Sun. Plant Pathol. Bull. 12:212, 2003. (2) E. I. Zehr, Constriction canker. Page 31 in: Compendium of Stone Fruit Diseases. J. M. Ogawa et al., eds. The American Phytopathological Society, St. Paul, MN, 1995.


Sign in / Sign up

Export Citation Format

Share Document