scholarly journals First Report of Septoria Blight of Parsley Caused by Septoria petroselini in the Mediterranean Region of Turkey

Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 99-99 ◽  
Author(s):  
S. Kurt

During December 2001 to March 2002, Septoria blight of parsley was observed in approximately 500 ha of commercial parsley crops in Arsuz County, Hatay, in the Mediterranean Region of Turkey. Incidence of disease ranged from 42 to 80%. Symptoms included irregularly shaped, grayish brown spots (average 3 to 8 mm diameter) with a slightly darker brown margin of necrotic tissue that developed into tan-to-brown lesions surrounded by chlorotic halo on the leaves. Oval-shaped lesions were observed occasionally on petioles. Lesions contained erumpent, dark brown, flask-shaped pycnidia with the ostiole on the upper surface of the foliage. Thirty samples, consisting of diseased leaves and petioles of parsley, were collected from each field. Infected tissues were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile distilled water, placed on petri dishes containing potato dextrose agar (PDA), and incubated for 10 to 14 days at 25°C. The fungus formed long, multiseptate (0 to 4), hyaline, filiform conidia (14 to 29 μm × 0.5 to 1.9 μm), and short conidiophores within the pycnidia. Based on the morphological characteristics of the fungus, the pathogen was identified as Septoria petroselini Desm. (1). Monoconidial cultures of 18 isolates were prepared. Pathogenicity was confirmed by brush-inoculating slightly wounded foliage of 5- to 7- week-old parsley plants (cv. Kereviz yapragi) with a conidial suspension (106 conidia per ml of sterile water) of each isolate of S. petroselini. Control plants that were brush-inoculated with distilled water and inoculated plants were placed in clear polyethylene bags that were closed and incubated at 20°C for 48 h. The bags were removed, and plants were maintained in a dew chamber for 21 days at 65 to 70% relative humidity. Foliar symptoms developed 15 days after inoculation and appeared similar to lesions observed in the field. Yellowing and necrosis of leaves was also observed on >60% of inoculated plants. No lesions developed on the control plants. The pathogen was readily reisolated on PDA from inoculated plants. To our knowledge, this is the first report of Septoria blight of parsley in the Mediterranean Region of Turkey. Reference: (1) R. F. Cerkauskas and J. Uyenaka. Plant Dis. 74:1037, 1990.

Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1345-1345 ◽  
Author(s):  
M. C. Rivera ◽  
E. R. Wright ◽  
S. Carballo

Chinese rose (Hibiscus rosa-sinensis L.) is a shrub frequently planted in Argentina. In November 1999, dieback and anthracnose symptoms were detected on stems and leaves of plants cv. Hawaii cultivated in Buenos Aires. Disease prevalence was 50%. Pieces of infected tissues were surface-sterilized for 1 min in 2% NaOCl, plated on potato-dextrose agar and incubated at 24 ± 2°C. The isolate that was consistently recovered from diseased tissues was identified as Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., based on morphological characteristics (1,2). Teleomorph stage was not observed. Inoculation for pathogenicity testing was carried out by spraying a conidial suspension (6.5 × 106 conidia per ml) on plants with previously punctured leaves and pruned stems. Inoculated plants with unwounded tissues, as well as noninoculated controls, were included. Five replications of each treatment were done. Plants were incubated in moist chambers at 24°C. Whitish areas of 0.3 to 0.5 cm diameter surrounded by a purple halo developed on all punctured leaves within 10 days. Stem blight and leaf drop were observed. The center of the lesions was covered by black acervuli 14 days after inoculation. Unwounded and noninoculated controls remained symptomless. The pathogen was reisolated from inoculated leaves, completing Koch's postulates. This is the first report of C. gloeosporioides causing disease on Chinese rose in Argentina. References: (1) J. A. Bailey and M. J. Jeger, eds. 1992. Colletotrichum. CAB International, Surrey, England. (2) B. C. Sutton. 1980. The Coelomycetes. CMI, Kew.


Plant Disease ◽  
2021 ◽  
Author(s):  
Oliul Hassan ◽  
Taehyun Chang

In South Korea, ovate-leaf atractylodes (OLA) (Atractylodes ovata) is cultivated for herbal medicine. During May to June 2019, a disease with damping off symptoms on OLA seedlings were observed at three farmer fields in Mungyeong, South Korea. Disease incidence was estimated as approximately 20% based on calculating the proportion of symptomatic seedlings in three randomly selected fields. Six randomly selected seedlings (two from each field) showing damping off symptoms were collected. Small pieces (1 cm2) were cut from infected roots, surface-sterilized (1 minute in 0.5% sodium hypochlorite), rinsed twice with sterile water, air-dried and then plated on potato dextrose agar (PDA, Difco, and Becton Dickinson). Hyphal tips were excised and transferred to fresh PDA. Six morphologically similar isolates were obtained from six samples. Seven-day-old colonies, incubated at 25 °C in the dark on PDA, were whitish with light purple mycelia on the upper side and white with light purple at the center on the reverse side. Macroconidia were 3–5 septate, curved, both ends were pointed, and were 19.8–36.62 × 3.3–4.7 µm (n= 30). Microconidia were cylindrical or ellipsoid and 5.5–11.6 × 2.5–3.8 µm (n=30). Chlamydospores were globose and 9.6 –16.3 × 9.4 – 15.0 µm (n=30). The morphological characteristics of present isolates were comparable with that of Fusarium species (Maryani et al. 2019). Genomic DNA was extracted from 4 days old cultures of each isolate of SRRM 4.2, SRRH3, and SRRH5, EF-1α and rpb2 region were amplified using EF792 + EF829, and RPB2-5f2 + RPB2-7cr primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 2010) and sequenced (GenBank accession number: LC569791- LC569793 and LC600806- LC600808). BLAST query against Fusarium loci sampled and multilocus sequence typing database revealed that 99–100% identity to corresponding sequences of the F. oxysporum species complex (strain NRRL 28395 and 26379). Maximum likelihood phylogenetic analysis with MEGA v. 6.0 using the concatenated sequencing data for EF-1α and rpb2 showed that the isolates belonged to F. oxysporum species complex. Each three healthy seedlings with similar sized (big flower sabju) were grown for 20 days in a plastic pot containing autoclaved peat soil was used for pathogenicity tests. Conidial suspensions (106 conidia mL−1) of 20 days old colonies per isolate (two isolates) were prepared in sterile water. Three pots per strain were inoculated either by pouring 50 ml of the conidial suspension or by the same quantity of sterile distilled water as control. After inoculation, all pots were incubated at 25 °C with a 16-hour light/8-hour dark cycle in a growth chamber. This experiment repeated twice. Inoculated seedlings were watered twice a week. Approximately 60% of the inoculated seedlings per strain wilted after 15 days of inoculation and control seedlings remained asymptomatic. Fusarium oxysporum was successfully isolated from infected seedling and identified based on morphology and EF-1α sequences data to confirm Koch’s postulates. Fusarium oxysporum is responsible for damping-off of many plant species, including larch, tomato, melon, bean, banana, cotton, chickpea, and Arabidopsis thaliana (Fourie et al. 2011; Hassan et al.2019). To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by F. oxysporum in South Korea. This finding provides a basis for studying the epidemic and management of the disease.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1067-1067 ◽  
Author(s):  
V. Gupta ◽  
D. John ◽  
V. K. Razdan ◽  
S. K. Gupta

Bunium persicum (Kala zeera, also black cumin) is an economically important culinary crop that is cultivated for its seed pods and its tuberlike roots. In India, high-altitude regions of Himachal Pradesh, including the Padder valley and the Gurez area of Jammu and Kashmir, are areas of kalazeera production (3). In 2008 to 2009, tuber rot disease of kala zeera was observed during the late spring season in the Padder valley. Symptomatic plants were distributed in localized areas in the field and the symptoms included drying of foliage and rotting of tubers. White mycelia were found on the tubers at the late stages of disease development. Incidence of infection in the surveyed area was 80 to 90%. Yield losses were 50 to 60%. To isolate the causal pathogen, we cultured tissues from symptomatic tubers. Small bits of the infected tissue were surface disinfested in 0.1% mercuric chloride, followed by rinsing three times in sterile distilled water. The surface disinfested tissues were plated on potato dextrose agar (PDA) and incubated at 27°C for 4 days. Pure cultures of the mycelium from the diseased tissues were transferred to a second set of PDA for species identification. The fungus produced three types of spores: small, one-celled, oval microconidia; large, slightly curved, septate macroconidia; and rounded, thick-walled chlamydospores. Microconidia were mostly non-septate and 8.91 to 15.73 × 2.3 to 3.5 μm, whereas macroconidia were three- to five-septate and were 35.55 to 54.74 × 3.91 to 6.5 μm. On the basis of morphological characteristics (1), the fungus was identified and deposited as a member of the Fusarium solani species complex in the Indian Type Culture Collection, New Delhi (ID No. 8422.11). To confirm pathogenicity, healthy tubers were submerged for 20 min in a conidial suspension of the isolated fungus (1 × 105 cfu/ml), which was prepared in potato dextrose broth, incubated for 10 days at 27°C, and centrifuged at 140 rpm. Noninoculated controls were submerged in distilled water. Inoculated and control tubers were then planted in separate pots filled with sterilized soil and kept in a shade house. Symptoms appeared on inoculated tubers 9 to 10 days after planting. Signs of the pathogen in the form of mycelia were present. The tubers rotted and died 12 to 15 days after inoculation. Control tubers did not display any symptoms. F. solani species complex was reisolated from inoculated tubers, fulfilling Koch's postulates. F. solani has been reported to cause corm rot on gladiolus and saffron (2). To our knowledge, this is the first report of the F. solani species complex as pathogenic to tubers of kalazeera in India. References: (1) C. Booth. The Genus Fusarium. 47, 1971. (2) L. Z. Chen et al. J. Shanghai Agric. College 12:240, 1994. (3) K. S. Panwar et al. Agriculture Situation in India. 48:151, 1993.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 417-417 ◽  
Author(s):  
J. Dutta ◽  
S. Gupta ◽  
D. Thakur ◽  
P. J. Handique

Tea [Camellia sinensis (L.) O. Kuntze] is an economically important non-alcoholic caffeine-containing beverage crop widely cultivated for leaves in India, especially in the Darjeeling district of West Bengal. In May 2012, distinct blight symptoms were observed on leaves of popular tea cultivars AV-2, Tukdah 78, Rungli Rungliot 17/144, and Bannockburn 157 in commercial tea estates of the Darjeeling district. This disease reduces yield and quality of the leaves. The initial symptoms were frequently observed on the young leaf margins and apices. Foliar symptoms are characterized by grayish to brown, semicircular or irregular shaped lesions, often surrounded by pale yellow zones up to 9 mm in diameter. The lesions later expand and the affected leaves turn grayish to dark brown and eventually the dried tissue falls, leading to complete defoliation of the plant. The disease causes damage to leaves of all ages and is severe in young leaves. A portion of the symptomatic leaf tissues were surface sterilized in 70% ethanol for 30 s, then in 2% NaClO for 3 min, rinsed three times in sterile distilled water, and plated onto potato dextrose agar (PDA). The fungal colonies were initially white and then became grayish to brown with sporulation. Conidia were spherical to sub spherical, single-celled, black, 19 to 21 μm in diameter, and were borne on a hyaline vesicle at the tip of each conidiophore. Morphological characteristics of the isolates were concurring to those of Nigrospora sphaerica (1). Moreover, the internal transcribed spacer (ITS) region of the ribosomal RNA was amplified by using primers ITS1 and ITS4 and sequenced (GenBank Accession No. KJ767520). The sequence was compared to the GenBank database through nucleotide BLAST search and the isolate showed 100% similarity to N. sphaerica (KC519729.1). On the basis of morphological characteristics and nucleotide homology, the isolate was identified as N. sphaerica. Koch's postulates were fulfilled in the laboratory on tea leaves inoculated with N. sphaerica conidial suspension (106 conidia ml−1) collected from a 7-day-old culture on PDA. Six inoculated 8-month-old seedlings of tea cultivars AV-2 and S.3/3 were incubated in a controlled environment chamber at 25°C and 80 to 85% humidity with a 12-h photoperiod. In addition, three plants of each cultivar were sprayed with sterile distilled water to serve as controls. Twelve to 14 days after inoculation, inoculated leaves developed blight symptoms similar to those observed on naturally infected tea leaves in the field. No symptoms were observed on the control leaves. The pathogen was re-isolated from lesions and its identity was confirmed by morphological characteristics. It was reported that N. sphaerica is frequently encountered as a secondary invader or as a saprophyte on many plant species and also as a causative organism of foliar disease on several hosts worldwide (2,3). To our knowledge, this is first report of N. sphaerica as a foliar pathogen of Camellia sinensis in Darjeeling, West Bengal, India, or worldwide. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 01, 2013. (3) E. R. Wright et al. Plant Dis. 92:171, 2008.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hongsen Cheng ◽  
De Xue Gao ◽  
Huijie Sun ◽  
Yanbin Na ◽  
Jing Xu

Sesame (Sesamum indicum L.) is an important oilseed crop in China and it is also used in food and health products. In August of 2019, a blight sesame fruit was observed in a field of Liaoyang city, Liaoning province of China. Initial disease symptoms consisted of brown or dark brown spots on fruit. With time, lesions coalesced and the whole fruit turned dark brown or black. Most of the diseased fruit had thin and small, deformed, necrotic, hardened cracked epidermal lesions. Lesions were also produced on stem and petioles leading to leaf abscission. The disease results in premature fruit death, and in turn, considerable yield losses. To determine the causal agent, symptomatic fruit with developing lesions were collected, and surface sterilized in 2% NaClO for 3 min, rinsed three times in distilled water, and plated onto PDA medium. After incubation at 25°C for 5 days, a dark olivaceous fungus with abundant, branched, brown to black, and septate hyphae was consistently isolated. Twenty single spores were separated with an inoculation needle under stereomicroscope. The conidia were in chains, brown, obclavate, ovoid or ellipsoid, with 1-6 transverse septa and 0-4 longitudinal or oblique septa 12.5 to 45 × 6.5 to 14.5 μm in size. Conidiophores were septate, light brown to olive brown, measuring 22-60 μm × 2-4 μm. The morphological characteristics of the 20 isolates all matched the description of Alternaria alternata (Simmons, 2007). The internal transcribed spacer (ITS) region of rDNA of 15 isolates was amplified using primers ITS1/ITS4 (White et al. 1990) and EF1-728F/EF1-986R (Carbone et al. 1999) and sequenced. Identical sequences were obtained and the sequence of the isolate ZMHG12 was submitted to GenBank (Accession no. MW418181 and MW700316). BLAST analysis of the sequences of the isolates of ZMHG12 showed 100% to A. alternata (KP739875 and LC132712). In pathogenicity tests, a conidial suspension (2.5 × 105 conidia per ml) was prepared from 7 days-old cultures of isolate ZMHG12 grown on PDA at 25°C. Fruit of 10 two-month-old potted sesame plants (Variety “Liaozhi 8”) were sprayed with the conidia suspension until runoff. Another 10 plants sprayed with distilled water to served as non-inoculated controls. All plants were maintained for 48 h in a humid chamber with a temperature of 25°C to 26°C, and then moved to a greenhouse. Ten days after inoculation, all fruit of inoculated plants exhibited symptoms similar to those observed in the field and non-inoculated control plants remained symptomless. The experiment was repeated twice with similar results. A. alternata has been reported as a pathogen caused leaf blight disease of sesame in Pakistan (Nayyar et al. 2017). To our knowledge, this is the first report of A.alternata causing fruit blight of sesame in China. To date, we have observed the disease on sesames in fields of Fuxin, Chaoyang and Tieling city in Liaoning Province, and Tongliao city in Inner Mongolia of China, and it has become an important disease in sesame production of China. References : Simmons E. G. 2007. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands. White T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego. Carbone I., et al. 1999. Mycologia, 91: 553-556. Nayyar, B. G., et al. 2017. Plant Pathology Journal, 33 (6): 543-553.


Plant Disease ◽  
2021 ◽  
Author(s):  
Manlin Xu ◽  
Xia Zhang ◽  
Jing Yu ◽  
zhiqing Guo ◽  
Ying Li ◽  
...  

Peanut (Arachis hypogaea L.) is one of the most economically important crops as an important source of edible oil and protein. In August 2020, circular to oval-shaped brown leaf spots (2-6 mm in diameter) with well-defined borders surrounded by a yellow margin were observed on peanut plant leaves in Laixi City, Shandong Province, China. Symptomatic plants randomly distributed in the field, the incidence was approximately 5%. Leave samples were collected consisted of diseased tissue and the adjacent healthy tissue. The samples were dipped in a 70% (v/v) ethanol solution for 30 s and then soaked in a 0.1% (w/v) mercuric chloride solution for 60 s. The surface-sterilized tissues were then rinsed three times with sterile distilled water, dried and placed on Czapek Dox agar supplemented with 100 μg/ml of chloramphenicol. The cultures were incubated in darkness at 25 °C for 3–5 days. Fungal colonies were initially white and radial, turning to orange-brown in color, with abundant aerial mycelia. Macroconidia were abundant, 4 to 7 septate, with a dorsiventral curvature, and were 3.3–4.5 × 18.5–38.1 μm (n=100) in size; microconidia were absent; chlamydospores were produced in chains or clumps, ellipsoidal to subglobose, and thick walled. The morphological characteristics of the conidia were consistent with those of Fusarium spp. To identify the fungus, an EasyPure Genomic DNA Kit (TransGEN, Beijing, China) was used to extract the total genomic DNA from mycelia. The internal transcribed spacer region (ITS rDNA) and the translation elongation factor 1-α gene (TEF1) were amplified with primers ITS1/ITS4 (White et al. 1990) and EF1/EF2 (O’Donnell et al. 1998), respectively. Based on BLAST analysis, sequences of ITS (MT928727) and TEF1 (MT952337) showed 99.64% and 100% similarity to the ITS (MT939248.1), TEF1 (GQ505636.1) of F. ipomoeae isolates. Sequence analysis confirmed that the fungus isolated from the infected peanut was F. ipomoeae (Xia et al. 2019). The pathogenicity of the fungus was tested in the greenhouse. Twenty two-week-old peanut seedlings (cv. Huayu20) grown in 20-cm pots (containing autoclaved soil) were sprayed with a conidial suspension (105 ml−1) from a 15-day-old culture. Control plants were sprayed with distilled water. The experiment was conducted as a randomized complete block design, and placed at 25 °C under a 12-h photoperiod with 90% humidity. Symptoms similar to those in the field were observed on leaves treated with the conidial suspension ten days after inoculation, but not on control plants. F. ipomoeae was re-isolated from symptomatic leaves but not from the control plants. Reisolation of F. ipomoeae from inoculated plants fulfilled Koch's postulates. To our knowledge, this is the first report of F. ipomoeae causing peanut leaf spot in China. Our report indicates the potential spread of this pathogen in China and a systematic survey is required to develop effective disease management strategies.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1160-1160 ◽  
Author(s):  
M. C. Rivera ◽  
D. E. Morisigue ◽  
S. E. Lopez

During the spring of 2003, flower spots were observed on French hydrangea (Hydrangea macrophylla (Thunb.) DC) in CETEFFHO-INTA-JICA experimental greenhouses in Castelar, Argentina. Brown, irregular spots randomly distributed on petals were detected on an old, whiteflowering variety of unknown origin, cultivated by growers. Small pieces of diseased tissue were surface disinfested with 2% NaOCl, plated on 2% potato dextrose agar (PDA) with pH 7, and incubated at 22 to 24°C. Dense, whitish mycelium developed within 48 h and turned gray after 72 h. Conidia were ellipsoid, hyaline, nonseptate, and formed in botryose heads. Spores from 10-day-old colonies that were developed on PDA in test tubes were removed with 4 ml of sterile water per tube. Prior to inoculation, inflorescences were detached and placed in water-filled glass vases. To test pathogenicity, eight healthy inflorescences were sprayed with a 5-ml suspension (2 × 104 conidia per ml of sterile distilled water). Another eight healthy inflorescences were sprayed with sterile distilled water. The inflorescences were maintained at 21°C and covered with polyethylene bags that were removed after 3 days. Brown, circular-to-irregular spots appeared on petals 5 days after inoculation, became coalescent, and covered 50 to 60% of each inflorescence in 8 days. Gray mold consisting of black conidiophores and gray-in-mass conidia was observed 3 days after the development of the symptoms. Controls remained symptomless. The same pathogen was recovered from inoculated flowers and was identified as Botrytis cinerea Pers.:Fr. (1). To our knowledge, this is the first report of this fungus on Hydrangea macrophylla in Argentina. Reference: (1) M. V. Ellis and J. M. Waller. Sclerotinia fuckeliana (condial state: Botrytis cinerea).No. 431 in: Descriptions of Pathogenic Fungi and Bacteria, CMI, Kew, Surrey, UK, 1974.


Plant Disease ◽  
1999 ◽  
Vol 83 (1) ◽  
pp. 77-77
Author(s):  
C. Cappelli ◽  
R. Buonaurio ◽  
R. Torricelli

In May 1997, ascochyta blight incited by Ascochyta lentis Vassiljevsky was observed at an incidence of less than 5% in lentil (Lens culinaris Medik.) fields in Umbria (Central Italy). Symptoms appeared on leaves and stems as tan spots surrounded by a dark margin. Small black pycnidia that produced a pink exudate containing hyaline, 1 septate, 14.2 to 15.8 × 3.5 μm conidia under high humidity were visible in the center of the spots. The fungus was consistently isolated on potato dextrose agar from diseased leaves or stems. To satisfy Koch's postulates, a conidial suspension (106 conidia per ml) of the fungus was sprayed on leaves of 20-day-old lentil plants (landrace Castelluccio) that were maintained in a humidity chamber for 96 h after inoculation. Lesions resembling symptoms that occurred in the field were observed on plants 3 weeks after inoculation. Symptoms were not observed on control plants sprayed with water. The fungus reisolated from the diseased plants was identical to the original isolates. Based on morphological characteristics of pycnidia and conidia as well as pathogenicity, the fungus was identified as A. lentis. A deep-freeze blotter method (2) was used to detect A. lentis in lentil seeds of 20 local landraces used by Umbrian farmers and two accessions from Canada and Turkey, as well as in seed collected from infected fields. The fungus was present only in the two lentil accessions with an incidence of about 5%. Although the fungus had been isolated from Italian seed germplasm in 1986 (1), this is the first report of ascochyta blight occurring in lentil crops in Italy. The heavy rainfalls that characterize the first stage of lentil cultivation in Umbria are favorable for disease development while hot and dry conditions that usually occur during flowering and maturation prevent the dissemination of inoculum and the infection of the seeds. For these reasons, some Umbrian areas could be more suitable for production of ascochyta-free lentil seeds. References: (1) W. J. Kaiser and R. M. Hannan. Phytopathology 76:355, 1986. (2) T. Limonard. Proc. Int. Seed Test. Assoc. 33:343, 1968.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Li Jin ◽  
Huiyue Chen ◽  
Xiang-rong Zheng ◽  
Minjia Wang ◽  
...  

American sweetgum (Liquidambar styraciflua L.) is an important tree for landscaping and wood processing. In recent years, leaf spots on American sweetgum with disease incidence of about 53% were observed in about 1200 full grown plants in a field (about 8 ha) located in Pizhou, Jiangsu Province, China. Initially, dense reddish-brown spots appeared on both old and new leaves. Later, the spots expanded into dark brown lesions with yellow halos. Symptomatic leaf samples from different trees were collected and processed in the laboratory. For pathogen isolation, leaf sections (4×4mm) removed from the lesion margin were surface sterilized with 75% ethanol for 20s and then sterilized in 2% NaOCl for 30s, rinsed three times in sterile distilled water, incubated on potato dextrose agar (PDA) at 25 °C in the darkness. After 5 days of cultivation, the pure culture was obtained by single spore separation. 6 isolate samples from different leaves named FXA1 to FXA6 shared nearly identical morphological features. The isolate FXA1 (codes CFCC 54675) was deposited in the China Center for Type Culture Collection. On the PDA, the colonies were light yellow with dense mycelium, rough margin, and reverse brownish yellow. Conidiophores (23–35 × 6–10 µm) (n=60) were solitary, straight to flexuous. Conidia (19–34 × 10–21 µm) (n=60) were single, muriform, oblong, mid to deep brown, with 1 to 6 transverse septa. These morphological characteristics resemble Stemphylium eturmiunum (Simmons 2001). Genomic DNA was extracted from mycelium following the CTAB method. The ITS region, gapdh, and cmdA genes were amplified and sequenced with the primers ITS5/ITS4 (Woudenberg et al. 2017), gpd1/gpd2 (Berbee et al. 1999), and CALDF1/CALDR2 (Lawrence et al. 2013), respectively. A maximum likelihood phylogenetic analysis based on ITS, gapdh and cmdA (accession nos. MT898502-MT898507, MT902342-MT902347, MT902336-MT902341) sequences using MEGA 7.0 revealed that the isolates were placed in the same clade as S. eturmiunum with 98% bootstrap support. All seedlings for pathogenicity tests were enclosed in plastic transparent incubators to maintain high relative humidity (90%-100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. For pathogenicity, the conidial suspension (105 spores/ml) of each isolate was sprayed respectively onto healthy leaves of L. styraciflua potted seedlings (2-year-old, 3 replicate plants per isolate). As a control, 3 seedlings were sprayed with sterile distilled water. After 7 days, dense reddish-brown spots were observed on all inoculated leaves. In another set of tests, healthy plants (3 leaves per plant, 3 replicate plants per isolate) were wound-inoculated with mycelial plugs (4×4mm) and inoculated with sterile PDA plugs as a control. After 7 days, brown lesions with light yellow halo were observed on all inoculation sites with the mycelial plugs. Controls remained asymptomatic in the entire experiment. The pathogen was reisolated from symptomatic tissues and identified as S. eturmiunum but was not recovered from the control. The experiment was repeated twice with the similar results, fulfilling Koch’s postulates. S. eturmiunum had been reported on tomato (Andersen et al. 2004), wheat (Poursafar et al. 2016), garlic (L. Fu et al. 2019) but not on woody plant leaves. To our knowledge, this is the first report of S. eturmiunum causing leaf spot on L. styraciflua in the world. This disease poses a potential threat to American sweetgum and wheat in Pizhou.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tania Afroz ◽  
Samnyu JEE ◽  
Hyo-Won Choi ◽  
Ji Hyeon Kim ◽  
Awraris Derbie Assefa ◽  
...  

Cabbage (Brassica oleracea var. capitate L.) is an important vegetable crop that is widely cultivated throughout the world. In August 2019, wilting symptoms on cabbage (stunted growth, withered leaves, and wilted plants) were observed in a cabbage field of Pyeongchang, Gangwon Province, with an incidence of 5 to 10%. To identify the cause, symptomatic root tissue was excised, surface-sterilized with 70% ethanol, and rinsed thrice with sterile distilled water. The samples were dried on blotter paper, placed onto potato dextrose agar (PDA), and incubated at 25°C for 1 week. Five morphologically similar fungal isolates were sub-cultured and purified using the single spore isolation method (Choi et al. 1999). The fungus produced colonies with abundant, loosely floccose, whitish-brown aerial mycelia and pale-orange pigmentation on PDA. Macroconidia had four 4 to six 6 septa, a foot-shaped basal cell, an elongated apical cell, and a size of 20.2 to 31.8 × 2.2 to 4.1 μm (n = 30). No microconidia were observed. Chlamydospores were produced from hyphae and were most often intercalary, in pairs or solitary, globose, and frequently formed chains (6.2? to 11.7 μm, n = 10). Based on these morphological characteristics, the fungus was identified as Fusarium equiseti (Leslie and Summerell 2006). A representative isolate was deposited in the Korean Agricultural Culture Collection (KACC48935). For molecular characterization, portions of the translation elongation factor 1-alpha (TEF-1α) and second largest subunit of RNA polymerase II (RPB2) genes were amplified from the representative isolate using the primers pair of TEF-1α (O’Donnell et al. 2000) and GQ505815 (Fusarium MLST database), and sequenced. Searched BLASTn of the RPB2 sequence (MT576587) to the Fusarium MLST database showed 99.94% similarity to the F. incarnatum-equiseti species complex (GQ505850) and 98.85 % identity to both F. equiseti (GQ505599) and F. equiseti (GQ505772). Further, the TEF-1α sequence (MT084815) showed 100% identity to F. equiseti (KT224215) and 99.85% identity to F. equiseti (GQ505599), respectively. Therefore, the fungus was identified as F. equiseti based on morphological and molecular identification. For pathogenicity testing, a conidial suspension (1 × 106 conidia/ml) was prepared by harvesting macroconidia from 2-week-old cultures on PDA. Fifteen 4-week-old cabbage seedlings (cv. 12-Aadrika) were inoculated by dipping roots into the conidial suspension for 30 min. The inoculated plants were transplanted into a 50-hole plastic tray containing sterilized soil and maintained in a growth chamber at 25°C, with a relative humidity of >80%, and a 12-h/12-h light/dark cycle. After 4 days, the first wilt symptoms were observed on inoculated seedlings, and the infected plants eventually died within 1 to 2 weeks after inoculation. No symptoms were observed in plants inoculated with sterilized distilled water. The fungus was re-isolated from symptomatic tissues of inoculated plants and its colony and spore morphology were identical to those of the original isolate, thus confirming Koch's postulates. Fusarium wilt caused by F. equiseti has been reported in various crops, such as cauliflower in China, cumin in India, and Vitis vinifera in Spain (Farr and Rossman 2020). To our knowledge, this is the first report of F. equiseti causing Fusarium wilt on cabbage in Korea. It This disease poses a threat to cabbage production in Korea, and effective disease management strategies need to be developed.


Sign in / Sign up

Export Citation Format

Share Document