scholarly journals Occurrence of Lily mottle virus in Escarole

Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 329-329 ◽  
Author(s):  
V. Lisa ◽  
H. J. Vetten ◽  
D.-E. Lesemann ◽  
P. Gotta

Lily mottle virus (LMoV), genus Potyvirus, an important virus of lily that also causes flower-breaking in tulip (1), is considered to have a natural host range restricted to the family Liliaceae. In 1996, escarole (Cichorium endivia L. var. latifolium LAM) plants growing in fields close to Torino, Italy, and showing mosaic and necrotic spots on outer leaves were infected by a potyvirus related to LMoV. The virus was identified by immunoelectron microscopy (IEM) done on experimentally infected Nicotiana benthamiana and Chenopodium quinoa. The virus isolated from escarole (LMoV-E) had an experimental host range similar to that of lily isolates of LMoV, although species within the Liliaceae were not tested. LMoV-E systemically infected all nine escarole cultivars and six of seven endive cultivars (C. endivia L. var. crispum LAM) but did not infect any of six lettuce and two chicory cultivars (C. intybus L. var. foliosum HEGI). Symptoms ranged from mild to severe mosaic and were generally more severe on escarole than on endive. Some of the same escarole, endive, and lettuce cultivars were inoculated with a typical LMoV isolate from lily (Le97/49, from A. F. L. M. Derks, the Netherlands), which induced mild systemic infections in only one escarole and one endive cultivar. Both cultivars were also susceptible to LMoV-E. LMoV-E was purified from N. benthamiana, and an antiserum was prepared. IEM decoration titer experiments were done with LMoV-E and four other LMoV isolates from Liliaceae and their homologous antisera. Heterologous titers ranging from identity to serological differentiation index values of 2 to 4 were obtained, confirming the identity of the escarole isolate as a LMoV strain and indicating considerable serological variability among LMoV isolates. In a field survey of endive and escarole crops in 1998, in the area where LMoV-E was first identified, the virus was again detected by enzyme-linked immunosorbent assay in 4 of 80 escarole plants tested. LMoV-E appears to be a LMoV strain particularly adapted to escarole. To our knowledge, this is the first report of LMoV identified in a naturally infected host outside monocotyledonous plants. Reference: (1) E. L. Dekker et al. J. Gen. Virol. 74:881, 1993.

2021 ◽  
Author(s):  

Abstract U. agropyri causes flag smut on leaves of species in the family Poaceae. As a pathogen of grasses, it appears to have a wide host range (Mordue and Waller, 1981) and a worldwide distribution (UK CAB International, 1991). However, some authorities do not include the pathogen on wheat [Triticum aestivum], identified as Urocystis tritici, within U. agropyri. Rossman et al. (2006) place U. agropyri in the category of a "Threat to Major Crop Plants" and wheat and wheat straw imports are restricted in North America (Anon., 2005; CFIA, 2008). If the widespread species includes the wheat pathogen, then it is already present on all continents with agriculture and in major wheat-growing areas (Purdy, 1965), so it has already been introduced and may be difficult to exclude from additional areas. Both smuts are seed- and soil-borne, causing systemic infections that can be perennial in weeds and graminaceous crops, including turfgrasses. The spore balls are windborne (Purdy, 1965) and prevention of spread among wild grasses on land is not amenable to control.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1125-1131 ◽  
Author(s):  
Dallas L. Seifers ◽  
T. J. Martin ◽  
J. P. Fellers

Triticum mosaic virus (TriMV) is a newly discovered virus isolated from wheat (Triticum aestivum). This study was conducted to determine an experimental host range for TriMV and identify species that could serve as differential hosts for isolating TriMV from Wheat streak mosaic virus (WSMV). Plants tested were mechanically inoculated with the 06-123 isolate of TriMV or the Sidney 81 isolate of WSMV. Some plants were analyzed by enzyme-linked immunosorbent assay (ELISA) using antibodies of TriMV and WSMV. Plants infected with TriMV always produced mosaic symptoms and only extracts of symptomatic plants reacted with antibodies of TriMV. Maize is not a host for TriMV but barley, oat, rye, and triticale are hosts of TriMV. Certain barley and triticale accessions are hosts for TriMV but not WSMV. These plants can be used in combination with maize to separate WSMV and TriMV in plants infected by both viruses. We also showed that 8 wild grass species were susceptible to TriMV and 25 were not. All of the grasses susceptible to infection with TriMV have been reported as susceptible to infection with WSMV. Because of their growth habits, these plant species would be less desirable for use as differential hosts than maize, barley, and triticale.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2571-2577 ◽  
Author(s):  
Scott Adkins ◽  
Tom D’Elia ◽  
Kornelia Fillmer ◽  
Patchara Pongam ◽  
Carlye A. Baker

Foliar symptoms suggestive of virus infection were observed on the ornamental plant hoya (Hoya spp.; commonly known as waxflower) in Florida. An agent that reacted with commercially available tobamovirus detection reagents was mechanically transmitted to Chenopodium quinoa and Nicotiana benthamiana. Rod-shaped particles ∼300 nm in length and typical of tobamoviruses were observed in partially purified virion preparations by electron microscopy. An experimental host range was determined by mechanical inoculation with virions, and systemic infections were observed in plants in the Asclepiadaceae, Apocynaceae, and Solanaceae families. Some species in the Solanaceae and Chenopodiaceae families allowed virus replication only in inoculated leaves, and were thus only local hosts for the virus. Tested plants in the Amaranthaceae, Apiaceae, Brassicaceae, Cucurbitaceae, Fabaceae, and Malvaceae did not support either local or systemic virus infection. The complete genome for the virus was sequenced and shown to have a typical tobamovirus organization. Comparisons of genome nucleotide sequence and individual gene deduced amino acid sequences indicate that it is a novel tobamovirus sharing the highest level of sequence identity with Streptocarpus flower break virus and members of the Brassicaceae-infecting subgroup of tobamoviruses. The virus, for which the name Hoya chlorotic spot virus (HoCSV) is proposed, was detected in multiple hoya plants from different locations in Florida.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 959-959 ◽  
Author(s):  
A. S. Kline ◽  
E. J. Anderson

Cowpea aphid-borne mosaic potyvirus (CABMV) is one of several seed-borne viruses known to limit cowpea (Vigna unguiculata (L.) Walp. subsp. unguiculata) production in Africa, Europe, and Asia, but CABMV has not been reported on commercially grown cowpeas in the United States (1). However, a sesame (Sesamum indicum L.)-infecting isolate of CABMV was recently characterized from plants growing near cowpea introduction plots in Georgia (2). In February 1997, we received samples of three seed lots of cowpea cv. Chinese Red that had been harvested in southern Texas during 1996. Approximately 28% of the plants grown from these seed lots expressed strong mosaic symptoms on primary and trifoliate leaves. Viruslike symptoms were reproduced following mechanical transmission to plants of Chinese Red cowpea, Nicotiana benthamiana, and soybean (Glycine max L.) cv. Lee. When Coronet and Pinkeye Purple Hull-BVR cowpeas were inoculated with sap extracts from symptomatic Chinese Red plants, chlorotic lesions developed on inoculated leaves, but only Coronet plants supported symptomless systemic infections. Similarly inoculated plants of Chenopodium quinoa (L.) and common bean (Phaseolus vulgaris L.) cvs. Pinto and Black Valentine developed localized chlorotic lesions. In Ouchterlony gel diffusion assays, extracts from symptomatic cowpea plants did not react with antisera to blackeye cowpea mosaic potyvirus (BlCMV), cucumber mosaic cucu-movirus (CMV), southern bean mosaic sobemovirus, cowpea mosaic comovirus, cowpea severe mosaic comovirus, or cowpea chlorotic mottle bromovirus. In the indirect enzyme-linked immunosorbent assay, sap extracts from symptomatic plants reacted with antiserum to CABMV, giving OD values at A405 of 0.10 to 0.25, and reacted weakly with antiserum to BlCMV, with OD values at A405 less than 0.035. Extracts from healthy control plants gave OD values at A405 less than 0.010. No positive reactions were obtained with antisera to bean yellow mosaic potyvirus, peanut mottle potyvirus, soybean mosaic potyvirus, or CMV. To our knowledge, this is the first report of CABMV in commercially grown cowpea from the U.S. References: (1) A. G. Gillaspie et al. Plant Dis. 79:388, 1995. (2) H. R. Pappu et al. Arch. Virol. 142:1, 1997.


2002 ◽  
Vol 92 (7) ◽  
pp. 694-702 ◽  
Author(s):  
T. J. Gulya ◽  
P. J. Shiel ◽  
T. Freeman ◽  
R. L. Jordan ◽  
T. Isakeit ◽  
...  

Sunflower mosaic is caused by a putative member of the family Potyviridae. Sunflower mosaic virus (SuMV) was characterized in terms of host range, physical and biological characteristics, and partial nucleotide and amino acid sequence. Cells infected with SuMV had cytoplasmic inclusion bodies typical of potyviruses. Of 74 genera tested, only species in Helianthus, Sanvitalia, and Zinnia, all Asteraceae, were systemic hosts. Commercial sunflower hybrids from the United States, Europe, and South Africa were all equally susceptible. The mean length of purified particles is approximately 723 nm. The virus was transmitted by Myzus persicae and Capitphorus elaegni, and also was seedborne in at least one sunflower cultivar. Indirect enzyme-linked immunosorbent assay tests with a broad-spectrum potyvirus monoclonal antibody were strongly positive. SuMV-specific polyclonal antisera recognized SuMV and, to a lesser extent, Tobacco etch virus (TEV). When tested against a panel of 31 potyvirus-differentiating monoclonal antibodies, SuMV was distinct from any potyvirus previously tested. SuMV shared four epitopes with TEV, but had a reaction profile more similar to Tulip breaking virus (TBV). SuMV did not possess epitopes unique only to TBV. The predicted coat protein had a molecular weight of 30.5 kDa. The 3′ end of the virus genome was cloned and sequenced. Phylogenetic analysis of the coat protein amino acid sequence revealed that SuMV is a distinct species within the family Potyviridae, most closely related to TEV.


Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1263-1263 ◽  
Author(s):  
D. M. Mathews ◽  
J. A. Dodds

During the last several years, two California propagators have detected what was believed to be the tymovirus Scrophularia mottle virus (ScrMV) in several ornamental plant species on the basis of enzyme-linked immunosorbent assay (ELISA) using a ScrMV antibody system. Symptoms were generally mild, ranging from nonsymptomatic to a mild mosaic. Our laboratory confirmed the presence of a tymovirus in one Verbena sp. and two Diascia spp. cultivars on the basis of dsRNA analysis that showed bands of approximately 6,400 and 300 nucleotides representing the genomic and coat protein subgenomic RNAs, respectively. While these plants and those that were experimentally infected (Nicotiana benthamiana and N. clevelandii) also tested positive for ScrMV by ELISA, the host range did not match that published for ScrMV, notably the lack of symptoms in Chenopodium quinoa and the lack of systemic infection in Datura stramonium. A similar host range result was reported in Europe for another tymovirus that cross reacts with ScrMV antiserum, Nemesia ring necrosis virus (NeRNV) (2). Using NeRNV specific primers (1), we used reverse transcription-polymerase chain reaction (RT-PCR) to test plants that had previously tested positive for ScrMV by ELISA and had dsRNAs typical of a tymovirus. An amplicon of the appropriate size (960 bp) for NeRNV was obtained from each of five samples. Using ScrMV specific primers, the same samples failed to amplify the expected product. We have found NeRNV in three Diascia spp., one Verbena sp., and one Nemesia sp. plants in two counties in California (Riverside and San Diego). When the RT-PCR products were sequenced, they all had 99% sequence identities to NeRNV with 4 to 7 single nucleotide changes (GenBank Accession Nos. DQ648150 to DQ648154). Notably, each of the five amplicons had changes at nucleotides 5134 (G to C) and 5549 (G to T) when compared with the European isolates of NeRNV, which did not result in any amino acid changes. To our knowledge, this is the first report of NeRNV in North America and more specifically, in California. References: (1) R. Koenig et al. J. Gen. Virol. 86:1827, 2005. (2) A. L. Skelton et al. Plant Pathol. 53:798, 2004.


Plant Disease ◽  
2003 ◽  
Vol 87 (8) ◽  
pp. 1007-1007 ◽  
Author(s):  
C. A. Baker ◽  
D. Achor ◽  
S. Adkins

Desert rose (Adenium obesum (Forssk) Roem. & Schult.) is a member of the family Apocynaceae and characterized by fleshy leaves and stems and colorful flowers. This popular, exotic ornamental, originally from southeastern Africa, is propagated vegetatively and is a perennial in warm climates. Virus-like foliar symptoms, including a mosaic with dark green islands surrounding the veins and chlorosis on the leaf margins, were observed on desert rose samples from two southwest Florida nurseries in November 2002. Cucumber mosaic virus (CMV) was identified in symptomatic plants by serological testing for the presence of CMV coat protein with a commercially available ImmunoStrip test (Agdia, Elkhart, IN). A third sample expressing similar symptoms was observed in southeastern Florida in February 2003. The presence of CMV was confirmed by serological detection with a commercially available double-antibody sandwich enzyme-linked immunosorbent assay (Agdia). An agent was mechanically transmitted from the third sample to Chenopodium quinoa, resulting in the formation of chlorotic local lesions. Examination of inoculated C. quinoa leaves by double-stranded (ds) RNA analysis and electron microscopy (leaf dips) revealed the presence of a typical cucumovirus dsRNA profile and spherical virions ~28 nm in diameter, respectively, providing additional confirmation of a CMV infection. A possible satellite RNA of ~350 nucleotides was also observed by dsRNA analysis. To our knowledge, this represents the first report of CMV infection of desert rose.


Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 1029-1029 ◽  
Author(s):  
A. E. Dorrance ◽  
D. T. Gordon ◽  
A. F. Schmitthenner ◽  
C. R. Grau

Soybean has been increasing in importance and acreage over wheat and corn for the past decade in Ohio and is now planted on 4.5 million acres. Previous surveys in Ohio of viruses infecting soybean failed to identify Bean pod mottle virus (BPMV) and soybean virus diseases have rarely caused economic losses (1). During 1999, producers in Ohio noticed virus-like symptoms in soybeans in a few isolated locations. Soybeans with green stems, undersized and “turned up pods” were collected from Union, Wood and Wyandot Counties during October 1999 and soybeans with crinkled, mottled leaves were collected in Henry, Licking and Sandusky during August 2000. Five to six plants were collected from a single field from each county each year. In 1999, samples were sent to the University of Wisconsin-Madison, where one symptomatic leaflet/sample was ground in 3 ml of chilled phosphate buffered saline (pH 7.2). Leaf sap was placed in 1.5-ml centrifuge tubes and stored at 4°C for 24 h. Sap was assayed for the presence of BPMV using an alkaline phosphatase-labeled double-antibody sandwich enzyme-linked immunosorbent assay (DAS ELISA) for BPMV (AgDia Inc., Elkhart, IN). All samples tested were positive for BPMV. Samples collected in 1999 were also maintained at The Ohio State University in Harosoy soybean and in 2000 assayed serologically along with samples collected in 2000 for BPMV and Soybean mosaic virus (SMV) by ELISA and for Tobacco ringspot virus (TRSV) and Bean yellow mosaic virus (BYMV) by a host-range symptom assay; SMV, BYMV and TRSV had been identified from soybean in previous Ohio surveys. Soybean leaf samples were assayed using F(ab′)2-Protein A ELISA with antiserum prepared in 1968 to a southern U.S. isolate of BPMV and to an Ohio isolate of Soybean mosaic virus (SMV) prepared in 1967, both stored at −20°C. Diseased and non-symptomatic soybean leaf samples were ground in 4 ml 0.025M Tris pH 8.0, 0.015M NaCl and 0.05% Tween 20. Extracts were tested for BPMV and SMV by ELISA following a protocol described elsewhere (2). All of the samples collected during 1999 and maintained in the greenhouse tested positive for both BPMV and SMV while all of those samples collected during 2000 tested positive for BPMV and negative for SMV. Host-range symptom assays were conducted with leaf extracts prepared by grinding 1 g tissue:10 ml potassium phosphate buffer, pH 7.0. Extracts were inoculated by leaf rub method to Harosoy soybean, Phaseolus vulgaris cvs. Red Kidney and Bountiful, cowpea, and cucumber. The host-range symptom assays of both the 1999 and 2000 samples were negative for TRSV and BYMV; cowpea failed to express local lesions and cucumber systemic mosaic characteristic of TRSV infection and the two Phaseolus cultivars the yellow mosaic characteristic of BYMV infection. These results indicate that both BPMV and SMV were present in the samples in 1999 but only BPMV in 2000. The distribution of BPMV within Ohio and economic impact of this virus have yet to be determined. This is the first report of BPMV in Ohio. References: (1) A. F. Schmitthenner and D. T. Gordon. Phytopathology 59:1048, 1969. (2) R. Louie et al. Plant Dis. 84:1133–1139, 2000.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1538-1538 ◽  
Author(s):  
H.-Y. Liu ◽  
J. L. Sears ◽  
M. Bandla ◽  
A. M. Harness ◽  
B. Kulemeka

Calibrachoa mottle virus (CbMV), a tentative carmovirus, was first isolated and reported by Liu et al. (1) from infected Calibrachoa plants. During the spring of 2003, petunia samples from Florida and California sent to testing services at Agdia, Inc (Elkhart IN) tested positive for CbMV by enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (ImmunoStrips). These samples also tested positive by carmovirus group-specific polymerase chain reaction (PCR) primers and by immunocapture PCR (2). RNA extracted from these samples with the RNeasy Plant Kit (Qiagen Inc., Valencia, CA) hybridized with a digoxigenin labeled probe derived from purified CbMV viral RNA. All plant samples that tested positive for CbMV were symptomless except one symptomatic sample that also tested positive for Tobacco mosaic virus. From samples that tested positive for CbMV only, mechanical inoculations were made to Chenopodium quinoa at a USDA-ARS greenhouse in Salinas, CA. Representative single, local lesions were used to inoculate additional C. quinoa plants. The resulting local lesions from these inoculations were freeze-dried and further used as virus inoculum (CbMV petunia). Similar inoculum was made with CbMV isolated from Calibrachoa plants (CbMV calibrachoa). Virus-free Petunia hybrida cultivars Surfinia ‘Baby Pink’ and Surfinia ‘Violet’ (Jackson and Perkins Inc., Somis, CA) were mechanically inoculated with CbMV petunia and CbMV calibrachoa. Four weeks postinoculation, all plants were tested using ELISA for the presence of CbMV. In greenhouse conditions, 14.3% of ‘Baby Pink’ plants were positive for CbMV petunia, whereas none were positive for CbMV calibrachoa. ‘Violet’ plants were 64.3 and 33.3% positive for CbMV petunia and CbMV calibrachoa, respectively. None of the positive plants expressed virus-like symptoms. Virus particles resembling those of CbMV were observed from infected petunia plants with transmission electron microscopy in leaf-dip preparations. To our knowledge, this is the first report of CbMV infecting petunia. Commercial reproduction of petunia plants and maintenance of genetic mother stock are usually by vegetative propagation. CbMV can be transmitted mechanically and is readily propagated along with its host. To produce healthy petunia plants, virus-free mother stock should be used, which requires regular screening of mother stock for CbMV. Reference: (1) H.-Y. Liu et al. Plant Dis. 87:167, 2003. (2) A. M. Harness et al. (Abstr.) Phytopathology 92:S34, 2002.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 905-905 ◽  
Author(s):  
C. A. Baker ◽  
I. Kamenova ◽  
R. Raid ◽  
S. Adkins

Tropical soda apple (TSA) (Solanum viarum Dunal), a plant native to South America, was first identified in Florida in 1988 (4). It rapidly became a noxious weed in pastures throughout the state and it is known to be a reservoir for Cucumber mosaic virus, Potato leafroll virus, Potato virus Y (PVY), Tobacco etch virus (TEV), Tomato mosaic virus, and Tomato mottle virus, viruses that infect important vegetable crops in Florida (3). During a routine survey of Florida weeds during May of 2004, a TSA plant with chlorotic, young leaves found near Okeechobee, FL was determined to be infected with a potyvirus by using a commercially available enzyme linked immunosorbent assay kit (Agdia, Elkhart, IN). The results of a host range study indicated this potyvirus was neither PVY nor TEV. The virus caused local lesions in Chenopodium amaranticolor and systemic symptoms in C quinoa, Coreopsis sp. (C. A. Baker, unpublished), Helianthus annus, Nicotiana benthamiana, Petunia × hybrida, Verbena hybrida, and Zinnia elegans. It did not infect Gomphrena globosa, N. glutinosa, Pisum sativum, or Phaseolus vulgaris (1). Cylindrical inclusions consistent with those observed in plants infected with Bidens mottle virus (BiMoV) were observed in Z. elegans. Immunodiffusion tests with antiserum to BiMoV (Department of Plant Pathology, University of Florida) gave a reaction of identity with leaf extracts of the symptomatic zinnia, a known sample of BiMoV originally isolated from Bidens pilosa and a recent isolate of BiMoV from lettuce in Belle Glade, FL (C. A. Baker and R. Raid, unpublished). A partial polyprotein gene fragment (GenBank Accession No. EF467235) was amplified from total RNA of an inoculated C. quinoa plant by reverse transcription (RT)-PCR with previously described degenerate potyvirus primers (2). Analysis of the RT-PCR product sequence confirmed the host range results and indicated that the potyvirus infecting TSA was neither PVY nor TEV. However, the nucleotide and deduced amino acid sequences of a 247-bp portion of the RT-PCR product were 94 and 98% identical, respectively, with the coat protein sequence (GenBank Accession No. AF538686) of Sunflower chlorotic spot virus (SCSV). SCSV is a tentative potyvirus species described from Taiwan that is not yet recognized as an accepted species by the International Committee on Taxonomy of Viruses. On the basis of our concurrent host range, inclusion body, and serological data, it is likely that SCSV is in actuality the previously described and currently accepted potyvirus species BiMoV, for which no previous sequence data existed. As part of a comprehensive viral disease management plan, it is recommended that TSA plants growing in and around lettuce-production areas be controlled along with other weed hosts of this virus. References: (1) A. A. Brunt et al., eds. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20 at http://biology.anu.edu.au/Groups/MES/vide/ , 1996. (2) A. Gibbs and A. J. Mackenzie. Virol. Methods 63:9, 1997. (3) R. J. McGovern et al. Int. J. Pest Manag. 40:270, 1994. (4) J. J. Mullahey et al. Weed Technol. 7:783, 1993.


Sign in / Sign up

Export Citation Format

Share Document