scholarly journals Soybean Cyst Nematode Reduces Soybean Yield Without Causing Obvious Aboveground Symptoms

Plant Disease ◽  
2003 ◽  
Vol 87 (6) ◽  
pp. 623-628 ◽  
Author(s):  
J. Wang ◽  
T. L. Niblack ◽  
J. A. Tremain ◽  
W. J. Wiebold ◽  
G. L. Tylka ◽  
...  

Field experiments were conducted at locations in northern and southern Illinois, central Iowa, and central Missouri from 1997 to 1999 to investigate the effects of Heterodera glycines on soybean growth, development, and yield. A wide range of infestation levels was present at all locations. Two locally adapted cultivars, one resistant to H. glycines, were grown at each location. Cultivars were planted in alternating four-row strips with 76 cm between rows. For each cultivar, 20 1-m-long single-row plots were sampled every 2 weeks starting 4 weeks after planting. Infection by H. glycines reduced plant height and leaf and stem weight on the resistant cultivars in the first 12 weeks after planting, and delayed pod and seed development 12 to 14 weeks after planting. Biomass accumulation was not reduced on the susceptible cultivars until 10 weeks after planting; reduction in pod and seed development occurred throughout the reproductive stages. Susceptible cultivars produced significantly lower yields than resistant cultivars, but the yield reductions were not accompanied by visually detectable symptoms.

Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 761-768 ◽  
Author(s):  
T. J. Hughes ◽  
N. C. Kurtzweil ◽  
B. W. Diers ◽  
C. R. Grau

The soybean cyst nematode (SCN) and Phialophora gregata f. sp. sojae, the causal agent of brown stem rot (BSR), are two pathogens of soybean commonly found in the same field throughout the north-central United States. Field experiments designed to study the role of SCN-resistant germ plasm in soybean production have led to data suggesting that some sources of SCN resistance also may provide resistance to BSR. Soybean germ plasm with resistance to SCN was evaluated in greenhouse and field environments for resistance to BSR development based on the percentage of host tissue symptomatic of BSR. Comparison of SCN-resistant cultivars and plant introductions (PI) to standard BSR-resistant and -susceptible checks were conducted in two greenhouse experiments using a root-dip inoculation with a single isolate of P. gregata. For both greenhouse experiments, PI 209332 was the only source of SCN resistance with resistance to BSR similar to standard BSR-resistant checks. Nine other sources of SCN resistance, including PI 88788 and Peking, expressed BSR symptom severity similar to BSR-susceptible checks. Cultivars derived from most SCN-resistant sources, including PI 209332, also were susceptible to BSR development, while four of the five cultivars derived from PI 88788 were highly resistant to BSR development. SCN-resistant cultivars derived from PI 88788, Peking, and PI 209332 were planted along with standard BSR-resistant and -susceptible checks at two field locations naturally infested with P. gregata and SCN or P. gregata alone. As in greenhouse experiments, four of the five cultivars derived from PI 88788 expressed resistance to BSR development equal to or better than standard BSR-resistant checks at both locations. In contrast, cultivars derived from PI 209332 and Peking expressed varying levels of disease development depending on field environment. Yields observed for PI 88788-derived cultivars were higher than BSR-resistant checks regardless of the presence of SCN. Data from both greenhouse and field experiments suggest that cvs. Williams and Williams 82 may contain a gene or genes for BSR resistance that require one or more modifier genes, possibly located in the genome of PI 88788, for complete expression.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1473-1476 ◽  
Author(s):  
Melissa G. Mitchum ◽  
J. Allen Wrather ◽  
Robert D. Heinz ◽  
J. Grover Shannon ◽  
Gene Danekas

The soybean cyst nematode, Heterodera glycines, is a serious economic threat to soybean producers in Missouri. Periodic monitoring for the presence, population densities, and virulence phenotypes of H. glycines is essential for determining crop losses and devising management strategies implementing the use of resistant cultivars. A survey using area-frame sampling was conducted to determine the distribution and virulence phenotypes of H. glycines in Missouri during 2005. Two samples from each of 125 fields representing eight geographical regions of Missouri were collected; 243 samples were processed for extraction of cysts and eggs. In all, 49% of samples had detectable cyst nematode populations, which ranged from 138 to 85,250 eggs per 250 cm3 of soil. Race and H. glycines type tests were conducted on populations from 45 samples. Nearly 80% of the populations that were tested, irrespective of the region, were virulent on the indicator line plant introduction (PI) 88788, which is the source of resistance for most H. glycines-resistant cultivars. More than 70% of populations could reproduce on the indicator lines PI 88788, PI 209332, and PI 548316 (Cloud), indicating that soybean cultivars with resistance derived from these sources need to be carefully monitored and used only in rotation with nonhost crops and soybean cultivars with resistance from other sources. Approximately one-third of the populations, primarily in the southern regions of Missouri, could reproduce on PI 548402 (Peking), another common source of resistance. Fewer than 10% of the populations could reproduce on PI 90763, PI 437654, PI 89772, or PI 438489B, suggesting that these sources of resistance should be used in soybean breeding programs to develop H. glycines-resistant soybean cultivars.


Author(s):  
Krishna Acharya ◽  
Guiping Yan

Soybean cyst nematode (SCN; Heterodera glycines) is one of the devastating soybean pests worldwide, including the United States. Resistant cultivars combined with crop rotation are the primary methods for managing this nematode. SCN is known to have genetically diverse populations and can develop new virulent forms over time due to the continuous planting of cultivars derived from same source of resistance. Thus, identifying novel SCN resistant sources is of paramount importance for soybean breeding for nematode resistance. In this study, we screened 149 early maturity soybean [Glycine max (L.)] accessions for resistance to SCN HG type 2.5.7, which is one of the prevalent virulent SCN populations in North Dakota. SCN white females were extracted from individual plants of each accession after 35 days of growth in greenhouse conditions. The females were counted to determine a female index [FI = (average number of females on a tested accession/average number of females in Barnes, a susceptible soybean check) x 100]. The resistance response of each soybean accession was categorized as resistant, moderately resistant, moderately susceptible, and susceptible. Out of the soybean 149 accessions tested, only 13 were resistant in both runs of the experiments. The majority of screened soybean accessions were susceptible or moderately susceptible to the SCN HG type 2.5.7. The resistant soybean accessions identified in this study have the potential to be used in breeding SCN-resistant cultivars after further elucidation of the resistance genes or loci.


Nematology ◽  
2010 ◽  
Vol 12 (3) ◽  
pp. 335-341
Author(s):  
Naser Safaie ◽  
Zahra Tanha Maafi ◽  
Ebrahim Pourjam ◽  
Ramin Heydari

AbstractThe first occurrence of soybean cyst nematode, Heterodera glycines, on beans in Iran was documented when a cyst-forming nematode was detected in a commercial common bean (Phaseolus vulgaris) field in Iran and subsequently identified as H. glycines. The population was identified as HG Type 0. Host suitability of the 11 P. vulgaris cultivars most commonly grown in the country were evaluated with that population in pot and field trials. Pot assays were conducted in a growth chamber and nematode reproduction on the cultivars was compared. In the field trials, host suitability of the tested entries was evaluated in a field naturally infested with H. glycines. In both the pot and field experiments, most of the common bean cultivars were susceptible or moderately susceptible to the HG Type 0 populations of H. glycines. Common bean cvs Sayad and Dehghan were classified as moderately resistant in pot trials and were moderately resistant and moderately susceptible, respectively, in field trials. The occurrence of H. glycines in commercial bean production fields and lack of high levels of resistance of the commonly grown P. vulgaris cultivars could severely affect common bean and soybean production programmes in Iran.


Nematology ◽  
2015 ◽  
Vol 17 (5) ◽  
pp. 523-530 ◽  
Author(s):  
Daisuke Ito ◽  
Koki Toyota ◽  
Ghalia Missous Sedrati

The soybean cyst nematode (SCN), Heterodera glycines, is a widespread pest in most soybean-producing areas, causing serious damage to soybean crops and resulting in economic losses. We have previously reported that bean sprout residue might function as an environmentally-friendly control agent against SCN. In order to understand the role of water extracted from bean sprout residue as a possible factor in lowering the number of SCN, either water extract of bean sprout residue (WE) or water (W) was applied to pots containing soil infested with SCN, and komatsuna plants, a leafy vegetable, were grown in these pots. After 2 months, the number of SCN, estimated with real-time PCR, was 80% lower in WE than in W and the biomass of komatsuna plants was 100% higher in WE than in W, suggesting that WE has not only an SCN eradication effect but also a fertilisation effect. In field experiments, WE or W was applied ten times during the experimental period from July 2010 to June 2011. The number of SCN decreased by 82% in WE and by 36% in W; however, the marked decrease was observed only between July and September and between April and June. Green soybean plants were grown in the field where WE or W had been applied and the yield was markedly higher in WE (750 g m−2) than in W (200 g m−2). The hatching stimulation of SCN eggs by WE was tested at four different temperatures (10, 20, 25, 30°C) and was observed only at 25°C. These results show that water extract of bean sprout residue decreases the density of SCN and thereby damage to green soybeans, and that the suppressive effect depends on soil temperature.


Nematology ◽  
2020 ◽  
pp. 1-11 ◽  
Author(s):  
Seiya Chikamatsu ◽  
Ai Takeda ◽  
Kazuhiro Ohta ◽  
Takeo Imura ◽  
Roland N. Perry ◽  
...  

Summary Our previous study using pots reported that short-term growth of mung bean (Vigna radiata) may be useful to decrease the density of the soybean cyst nematode (SCN), Heterodera glycines, in soil. The objective of this study was to determine whether short-term growth of mung bean and its incorporation by ploughing decreased SCN density in infested fields. Firstly, we did pot experiments to evaluate the optimum temperature and moisture for hatching in soil. SCN hatching was stimulated at 25 and 30°C and not at 20°C; however, it was stimulated at alternating temperature conditions between 20 and 25°C. Soil moisture levels with pF 2.76 or less were required to stimulate SCN hatch in soil. Field experiments were done in Saitama, Kanagawa and Nara Prefectures, Japan. SCN density was reduced by nearly half even in control plots, in which mung bean was not cultivated and ploughed, in Saitama and Nara Prefectures. However, SCN density was reduced by nearly 80% or more in the three Prefectures, except for one plot in Kanagawa, and the soil temperature and moisture conditions were kept at around 20-30°C and at <pF 2.8. Increase in yield of green soybean by SCN control was estimated at 350 kg (1000 m)−2. Overall, the present study revealed that short-term field cultivation of mung bean and ploughing was a profitable method to decrease SCN density in infested fields and thereby to increase yield of green soybean.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


Author(s):  
Kangfu Yu ◽  
Lorna Woodrow ◽  
M. Chun Shi

AAC Richard is a food grade soybean [Glycine max (L.) Merr] cultivar with yellow hilum, high protein concentration, and good processing quality for foreign and domestic soymilk, tofu, and miso markets. It has resistance to SCN (soybean cyst nematode) (Heterodera Glycines Ichinohe). AAC Richard was developed at the Agriculture and Agri-Food Canada (AAFC) Harrow Research and Development Centre (Harrow-RDC), Harrow, Ontario and is adapted to areas of southwest Ontario with 3100 or more crop heat units and has a relative maturity of 2.3 (MG 2.3).


Sign in / Sign up

Export Citation Format

Share Document