Effectiveness of 14 Fungicides for Suppressing Lesions Caused by Phytophthora capsici on Inoculated Stems of Chile Pepper Seedlings

2014 ◽  
Vol 15 (4) ◽  
pp. 166-171 ◽  
Author(s):  
Michael E. Matheron ◽  
Martin Porchas

Phytophthora blight, caused by the oomycete pathogen Phytophthora capsici, is an economically important disease in bell and chile pepper. Fourteen different fungicides were evaluated with respect to inhibition of stem lesion growth on chile pepper seedlings inoculated with mycelium or with zoospores of P. capsici 1 or 3 weeks after treatment of plant foliage and stems or roots. Fungicides containing ametoctradin + dimethomorph and fluopicolide were the most effective among tested products in both experiments across eight trial parameters (inoculum type, inoculation time after treatment, and fungicide application site). Other active ingredients, including acibenzolar-S-methyl, dimethomorph, fenamidone, ethaboxam, mandipropamid, mefenoxam, and oxathiapiprolin, were most effective in reducing stem lesion growth in three to seven of the eight trial parameters evaluated. Compared to nontreated plants, stem lesion inhibition ranged from 84.1 to 100%. Data from these trials demonstrate the comparative effectiveness of tested products under controlled environmental conditions favorable for disease development; however, confirmation of these findings is required in field trials, where plant and environmental conditions will be variable. Accepted for publication 18 September 2014. Published 1 November 2014.

HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 518-524 ◽  
Author(s):  
Nathan Shoaf ◽  
Lori Hoagland ◽  
Daniel S. Egel

Phytophthora blight has become one of the most serious threats to the vegetable industry. Managing this disease is challenging, because the oomycete pathogen responsible, Phytophthora capsici, can move rapidly through crop fields, has a wide host range, is resistant to many commonly used fungicides, and produces resilient spores that can survive in soil for up to 10 years. Recent studies have demonstrated that biochar amendments can suppress infection by many soil-borne pathogens—indicating that these amendments could have the potential to help control phytophthora blight. In this study, greenhouse trials were conducted to determine whether two commercially available biochar amendments could suppress P. capsici infection in sweet bell pepper (Capsicum annuum) using three naturally infested field soils. Soil biological and chemical assays were conducted to evaluate whether potential changes induced by biochar amendments were correlated with suppressive activity. Amending soil with a biochar product that included a proprietary mix of beneficial microorganisms and enriched substrates resulted in lower soil P. capsici abundance in all soils, and lower percent root infection in two of the soils tested. This product also resulted in higher soil pH, and lower soil nitrogen availability and leaf chlorophyll content. The other biochar product did not suppress P. capsici, and had few effects on soil chemical and biological properties. Results of this study indicate that some commercially available biochar amendments have the potential to help mediate phytophthora blight, but further trials are needed to confirm that suppressive effects will be observed in field trials. Additional research is also recommended to identify the mechanisms regulating biochar-mediated suppression of phytophthora blight to develop products that can reliably suppress soil-borne diseases in the field.


2015 ◽  
Vol 16 (4) ◽  
pp. 218-222 ◽  
Author(s):  
Michael E. Matheron ◽  
Martin Porchas

Bell and chile pepper plants are affected by the economically important disease Phytophthora blight, which is caused by the oomycete pathogen Phytophthora capsici. Greenhouse and field trials were conducted to evaluate and compare the ability of nine different fungicides to reduce development of the crown and root rot phase of Phytophthora blight and the resulting chile pepper plant death when applied at 2- and 4-week intervals. Overall, chile pepper plant mortality was significantly decreased in three greenhouse trials with soil applications of fungicide products containing ametoctradin + dimethomorph, cyazofamid, dimethomorph, ethaboxam, fluazinam, fluopicolide, mandipropamid, mefenoxam, and oxathiapiprolin. The same fungicides, excluding mandipropamid and oxathiapiprolin, also significantly reduced overall plant mortality in two field trials. No significant difference was found between 2- and 4-week fungicide application intervals with respect to chile pepper plant survival in any greenhouse or field trial. In general, the degree of reduction in chile pepper plant mortality was lower in field compared to greenhouse trials, probably due to the respective soil surface spray compared to soil drench method of fungicide application used in each instance. Accepted for publication 17 November 2015. Published 30 November 2015.


2020 ◽  
Vol 30 (5) ◽  
pp. 608-618 ◽  
Author(s):  
Kyle E. LaPlant ◽  
Gregory Vogel ◽  
Ella Reeves ◽  
Christine D. Smart ◽  
Michael Mazourek

Phytophthora crown and root rot, caused by the oomycete pathogen Phytophthora capsici, is a devastating disease of squash and pumpkin (Cucurbita pepo). No currently available cultivars provide complete resistance to this disease. Three newly developed squash lines and four hybrids were evaluated in greenhouse and field experiments for their resistance to phytophthora crown and root rot as well as for their horticultural performance. The three newly developed lines ranked among the most resistant entries included in 2 years of field trials. In addition, in a separate greenhouse experiment, one of the lines was shown to display the least severe disease symptoms among a group of accessions previously reported to possess partial resistance to phytophthora crown and root. Furthermore, the resistance was observed to be robust to several isolates of P. capsici. However, the phytophthora-resistant lines had reduced yield relative to standard squash cultivars. These lines are useful for continued breeding efforts toward a phytophthora crown and root rot-resistant cultivar.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1563-1566 ◽  
Author(s):  
Ariadna Monroy-Barbosa ◽  
Paul W. Bosland

Phytophthora blight, caused by the oomycete Phytophthora capsici Leon., is a major disease that threatens production and long-term viability of the chile pepper (Capsicum annuum L.) industry. For each phytophthora disease syndrome such as root rot, foliar blight, and stem blight separate and independent resistant systems have evolved in the host. In addition, several physiological races of the pathogen have been identified. A novel, effective, and accurate screening technique is described that allows for multiple races to be evaluated on a single plant of C. annuum. The P. capsici resistant line Criollo de Morelos-334, a susceptible cultivar, Camelot, and three New Mexico Recombinant Inbred Lines, -F, -I, -S, were used to evaluate the new technique for phytophthora foliar blight multiple-race screening. Using three P. capsici physiological races, no interaction among the physiological races was observed with this technique. This novel technique provided a rapid disease screen evaluating multiple physiological races for phytophthora foliar blight resistance in a single chile pepper plant and can assist plant breeders in selecting for disease-resistant plants.


2019 ◽  
Vol 20 (2) ◽  
pp. 112-119
Author(s):  
Camilo H. Parada-Rojas ◽  
Lina M. Quesada-Ocampo

Phytophthora blight, caused by Phytophthora capsici, is an important disease of peppers in the United States and worldwide. P. capsici causes crown, root, and fruit rot as well as foliar lesions in peppers. Field trials were conducted in 2015 and 2016 to evaluate 32 commercial and experimental pepper cultivars against a mixed-isolate inoculum in North Carolina. Cultivars Martha-R and Meeting were classified as highly resistant to P. capsici, and Paladin was classified as resistant. Intermediate resistance to P. capsici in the field was observed with Fabuloso, Revolution, Vanguard, Archimedes, Aristotle, Ebano-R, and Declaration. Greenhouse experiments were conducted to determine the response of 48 pepper cultivars when inoculated individually with two isolates from North Carolina and an isolate from Michigan. Isolates exhibited different levels of virulence in pepper cultivars screened for resistance. Landraces CM334 and Fidel as well as the cultivars Martha-R, Meeting, and Intruder were categorized as highly resistant or resistant to the three isolates tested. Overall, highly resistant cultivars tended to respond similarly to field mix inoculations and greenhouse single isolate inoculations.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 291-296 ◽  
Author(s):  
S. Sanogo ◽  
J. Carpenter

Statewide surveys of commercial chile pepper (Capsicum annuum) fields were conducted in New Mexico from 2002 to 2004 to gain information on the incidence of diseases with wilt symptoms and their causative agents. Fifty-nine fields were surveyed during the course of this 3-year study when chile pepper plants were at growth stages from green fruit to beginning red fruit. All fields were affected by diseases with wilt symptoms. The proportion of total field area exhibiting symptoms of wilt spanned from less than 1% to over 80%. Field diagnostics along with laboratory assays of wilted plants revealed that the wilting was caused by Phytophthora capsici and Verticillium dahliae. The two pathogens were both found in 80% of the fields, and occurred together in some wilted plants in 12% of the fields. Average incidence of plant infection (number of plants infected with P. capsici or V. dahliae out of 5 to 25 wilted plants sampled) varied from approximately 40 to 90% for P. capsici, and from 18 to 65% for V. dahliae. Incidence of plant infection by P. capsici was approximately 40% less in fields with drip irrigation than in fields with furrow irrigation. In contrast, incidence of plant infection by V. dahliae was approximately 32% greater under drip irrigation than under furrow irrigation. In pathogenicity tests, isolates of P. capsici and V. dahliae caused symptoms in inoculated chile pepper identical to those in field-grown chile pepper plants. Results indicate that diseases with wilt symptoms are well established in chile pepper production fields, with P. capsici and V. dahliae posing the most serious challenge to chile pepper producers in New Mexico.


HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1846-1851 ◽  
Author(s):  
Mohammed B. Tahboub ◽  
Soumaila Sanogo ◽  
Paul W. Bosland ◽  
Leigh Murray

Phytophthora blight, caused by Phytophthora capsici Leon., is a major plant disease that limits chile pepper (Capsicum annuum L.) production in New Mexico. Chile pepper producers in New Mexico report that Phytophthora blight symptoms appear to develop slower and its incidence is lower in hot than in nonhot chile pepper cultivars. There has been no previous systematic assessment of the relationship of chile pepper heat level to chile pepper response to P. capsici. Three hot (‘TAM-Jalapeño’, ‘Cayenne’, and ‘XX-Hot’) and two low-heat (‘NuMex Joe E. Parker’ and ‘New Mexico 6-4’) chile pepper cultivars were inoculated at the six- to eight-leaf stage with zoospores of P. capsici under greenhouse conditions. Additionally, detached mature green fruit from three hot (‘TAM-Jalapeño’, ‘Cayenne’, and ‘XX-Hot’) and one low-heat (‘AZ-20’) chile pepper cultivars were inoculated with mycelium plugs of P. capsici under laboratory conditions. When plant roots were inoculated, Phytophthora blight was slowest to develop on ‘TAM-Jalapeño’ in contrast to all other cultivars. All ‘TAM-Jalapeño’ plants showed wilting symptoms or were dead ≈22 days after inoculation compared with 18, 15, 14, and 11 days for ‘NuMex Joe E. Parker’, ‘New Mexico 6-4’, ‘XX-Hot’, and ‘Cayenne’, respectively. When fruit were inoculated, lesion length ratio was significantly higher for ‘TAM-Jalapeño’ fruit than for ‘Cayenne’, ‘XX-Hot’, and ‘AZ-20’ fruit. Similarly, lesion diameter ratio was higher for ‘TAM-Jalapeño’ fruit than for fruit of other cultivars. Furthermore, mycelial growth on lesion surfaces was more extensive on ‘TAM-Jalapeño’ fruit than on fruit of other cultivars. Results from this study indicate that there is little or no relationship between heat level and chile pepper root and fruit infection by P. capsici.


Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1038-1043 ◽  
Author(s):  
M. E. Matheron ◽  
M. Porchas

The activity of five fungicides, azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl (subsequently replaced with mefenoxam by the manufacturer), was compared for effects on the development of root, crown, and fruit rot of chile pepper and on recovery of Phytophthora capsici from naturally infested soil. When inoculated with zoospores, plants survived longer and shoot and root fresh weights were greater for plants drenched with metalaxyl at 10 μg/ml than for plants treated with the same rate of azoxystrobin or dimethomorph. At 100 μg/ml, the duration of plant survival was greater for dimethomorph and fluazinam than for azoxystrobin; however, shoot and root growth did not differ. In soil naturally infested with P. capsici, survival and growth of shoots and roots for plants treated with dimethomorph at 100 μg/ml were greater than for those treated with the same rate of azoxystrobin or fluazinam. The most effective compounds for inhibition of lesion development on stems and fruit were mefenoxam at 1,200 μg/ml and dimethomorph at 480 μg/ml. Recovery of P. capsici from soil treated with each of the five tested compounds was significantly less than that recorded for soil not receiving a fungicide. The potential and relative value of azoxystrobin, dimethomorph, fosetyl-Al, and fluazinam as chemical management tools for Phytophthora blight on chile pepper, in addition to metalaxyl (replaced with mefenoxam), has been demonstrated.


Author(s):  
Phillip A Lujan ◽  
Srijana Dura ◽  
Ivette Guzman ◽  
Mary Grace ◽  
Mary Lila ◽  
...  

Phytophthora blight, caused by Phytophthora capsici, is detrimental to chile peppers (Capsicum spp.). In this study, phenolics extracted from pecan (Carya illinoinensis) husk and shell, were foliarly applied to chile pepper (Capsicum annuum L., cultivar NM 6-4) to induce a resistance response against plant infection by P. capsici. Several pecan metabolite extractions were tested, and an acetic acid (2%) in aqueous methanol (80%) solution was the best extraction solvent, yielding total polyphenolic content of 290 mg/g dry weight from husk and 641 mg/g from shell. The phenolic extracts from husk and shell were applied as foliar sprays at different concentrations to chile plants inoculated with a virulent isolate of P. capsici. Chile plants treated with 1% phenolic husk or shell extracts or 0.1% salicylic acid remained alive throughout the study while plants subjected to all other treatments (including a water control treatment) died. Analyses of the extracts through spectrophotometry and high performance liquid chromatography indicated that the phenolic content in the extracts was largely made up of proanthocyanidins also known as condensed tannins. Pecan byproducts may be used as additional options for management of Phytophthora blight.


2014 ◽  
Vol 15 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Amara R. Dunn ◽  
Holly W. Lange ◽  
Christine D. Smart

Phytophthora blight (Phytophthora capsici) is an important disease of bell peppers, causing crown, root, and fruit rot as well as foliar lesions. Substantial yield losses can result from either plant death or fruit rot. Host resistance is an effective management strategy for the root and crown rot phase of the disease, and a number of commercially-available pepper cultivars are described by the supplier as intermediately resistant. In field trials conducted over 5 years, the bell pepper cultivars Archimedes, Aristotle, Intruder, and Paladin were found to be the most resistant to a single isolate of P. capsici from New York State (NY 0664-1). Cultivars ACR285, Declaration, PS 09941819, Revolution, and Vanguard showed intermediate levels of resistance. Escalade, Karisma, Keystone Giant, King of the North, and Red Knight were highly susceptible to NY 0664-1. This information will be useful to growers selecting cultivars to plant in fields with a history of Phytophthora blight. Accepted for publication 24 October 2013. Published 30 January 2014.


Sign in / Sign up

Export Citation Format

Share Document