scholarly journals Auxin Profiling and GmPIN Expression in Phytophthora sojae−Soybean Root Interactions

2020 ◽  
Vol 110 (12) ◽  
pp. 1988-2002 ◽  
Author(s):  
Anna K. Stasko ◽  
Amine Batnini ◽  
Carlos Bolanos-Carriel ◽  
Jinshan Ella Lin ◽  
Yun Lin ◽  
...  

Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant−microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae−soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kurokawa ◽  
Masataka Nakano ◽  
Nobutaka Kitahata ◽  
Kazuyuki Kuchitsu ◽  
Toshiki Furuya

AbstractMicroorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant–microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell–cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 439-450 ◽  
Author(s):  
Diya Banerjee ◽  
Xiaochun Zhang ◽  
Andrew F Bent

Abstract Like many other plant disease resistance genes, Arabidopsis thaliana RPS2 encodes a product with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. This study explored the hypothesized interaction of RPS2 with other host factors that may be required for perception of Pseudomonas syringae pathogens that express avrRpt2 and/or for the subsequent induction of plant defense responses. Crosses between Arabidopsis ecotypes Col-0 (resistant) and Po-1 (susceptible) revealed segregation of more than one gene that controls resistance to P. syringae that express avrRpt2. Many F2 and F3 progeny exhibited intermediate resistance phenotypes. In addition to RPS2, at least one additional genetic interval associated with this defense response was identified and mapped using quantitative genetic methods. Further genetic and molecular genetic complementation experiments with cloned RPS2 alleles revealed that the Po-1 allele of RPS2 can function in a Col-0 genetic background, but not in a Po-1 background. The other resistance-determining genes of Po-1 can function, however, as they successfully conferred resistance in combination with the Col-0 allele of RPS2. Domain-swap experiments revealed that in RPS2, a polymorphism at six amino acids in the LRR region is responsible for this allele-specific ability to function with other host factors.


2018 ◽  
Vol 222 (1) ◽  
pp. 480-496 ◽  
Author(s):  
Thomas Badet ◽  
Ophélie Léger ◽  
Marielle Barascud ◽  
Derry Voisin ◽  
Pierre Sadon ◽  
...  

2018 ◽  
Vol 31 (4) ◽  
pp. 445-459 ◽  
Author(s):  
Kaixuan Duan ◽  
Christopher J. Willig ◽  
Joann R. De Tar ◽  
William G. Spollen ◽  
Zhanyuan J. Zhang

Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. This pathogen is capable of transferring the T-DNA from its Ti plasmid to the host cell and, then, integrating it into the host genome. To date, this genetic transformation ability has been harnessed as the dominant technology to produce genetically modified plants for both basic research and crop biotechnological applications. However, little is known about the interaction between Agrobacterium tumefaciens and host plants, especially the host responses to Agrobacterium infection and its associated factors. We employed RNA-seq to follow the time course of gene expression in Arabidopsis seedlings infected with either an avirulent or a virulent Agrobacterium strain. Gene Ontology analysis indicated many biological processes were involved in the Agrobacterium-mediated transformation process, including hormone signaling, defense response, cellular biosynthesis, and nucleic acid metabolism. RNAseq and quantitative reverse transcription-polymerase chain reaction results indicated that expression of genes involved in host plant growth and development were repressed but those involved in defense response were induced by Agrobacterium tumefaciens. Further analysis of the responses of transgenic Arabidopsis lines constitutively expressing either the VirE2 or VirE3 protein suggested Vir proteins act to enhance plant defense responses in addition to their known roles facilitating T-DNA transformation.


2021 ◽  
Author(s):  
Alfonso Gonzalo De la Rubia ◽  
María Luz Centeno ◽  
Victor Moreno-González ◽  
María De Castro ◽  
Penélope García-Angulo

Common bean (Phaseolus vulgaris L.) is attacked by several pathogens such as the biotrophic gamma-proteobacterium Pseudomonas syringae pv. phaseolicola (Pph). In order to study the Pph-bean interaction during the first stages of infection, leaf disks of a susceptible bean variety named Riñón were infected with a pathogenic Pph. Using this experimental system, six new putative Wall-Associated Kinase (WAKs) receptors, previously identified in silico, were tested. These six bean WAKs (PvWAKs) showed high protein sequence homology to the well-described Arabidopsis WAK1 (AtWAK1) receptor and, by phylogenetic analysis, clustered together with AtWAKs. The expression of PvWAK1 increased at very early stages after the Pph infection. Time course experiments were performed to evaluate the accumulation of apoplastic H2O2, Ca2+ influx, total H2O2, antioxidant enzymatic activities, lipid peroxidation, and the concentrations of abscisic acid (ABA) and salicylic acid (SA), as well as the expression of six defense-related genes – MEKK-1, MAPKK, WRKY33, RIN4, PR1 and NPR1. The results showed that overexpression of PR1 occurred 2 h after Pph infection without a concomitant increase in SA levels. Although apoplastic H2O2 increased after infection, the oxidative burst was neither intense nor rapid and an efficient antioxidant response did not occur, suggesting that the observed cellular damage was due to the initial increase in total H2O2 at early time points after infection. In conclusion, the Riñón variety can perceive the presence of Pph, but this recognition only results in a modest and slow activation of host defenses, leading to high susceptibility to Pph.


2004 ◽  
Vol 17 (10) ◽  
pp. 1051-1062 ◽  
Author(s):  
Pat Moy ◽  
Dinah Qutob ◽  
B. Patrick Chapman ◽  
Ian Atkinson ◽  
Mark Gijzen

To investigate patterns of gene expression in soybean (Glycine max) and Phytophthora sojae during an infection time course, we constructed a 4,896-gene microarray of host and pathogen cDNA transcripts. Analysis of rRNA from soybean and P. sojae was used to estimate the ratio of host and pathogen RNA present in mixed samples. Large changes in this ratio occurred between 12 and 24 h after infection, reflecting the rapid growth and proliferation of the pathogen within host tissues. From the microarray analysis, soybean genes that were identified as strongly upregulated during infection included those encoding enzymes of phytoalexin biosynthesis and defense and pathogenesis-related proteins. Expression of these genes generally peaked at 24 h after infection. Selected lipoxygenases and peroxidases were among the most strongly downregulated soybean genes during the course of infection. The number of pathogen genes expressed during infection reached a maximum at 24 h. The results show that it is possible to use a single microarray to simultaneously probe gene expression in two interacting organisms. The patterns of gene expression we observed in soybean and P. sojae support the hypothesis that the pathogen transits from biotrophy to necrotrophy between 12 and 24 h after infection.


Plant Science ◽  
2020 ◽  
Vol 291 ◽  
pp. 110362
Author(s):  
Zheng Wang ◽  
Feng-Yun Zhao ◽  
Min-Qiang Tang ◽  
Ting Chen ◽  
Ling-Li Bao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document