scholarly journals MAPKK Inhibitor U0126 Inhibits Plasmodiophora brassicae Development

2018 ◽  
Vol 108 (6) ◽  
pp. 711-720 ◽  
Author(s):  
Tao Chen ◽  
Kai Bi ◽  
Yanli Zhao ◽  
Xueliang Lyu ◽  
Zhixiao Gao ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades play a central role in cellular growth, proliferation, and survival. MAPK cascade genes have been extensively investigated in model plants, mammals, yeast, and fungi but are not characterized in Plasmodiophora brassicae, which causes clubroot disease in cruciferous plants. Here, we identified 7 PbMAPK, 3 PbMAPKK, and 9 PbMAPKKK genes in the P. brassicae genome. Transcriptional profiling analysis demonstrated that several MAPK, MAPK kinase (MAPKK), and MAPK kinase kinase (MAPKKK) genes were preferentially expressed in three different zoosporic stages. Based on yeast two-hybrid assays, PbMAKKK7 interacted with PbMAKK3 and PbMAKK3 interacted with PbMAK1/PbMAK3. The PbMAKKK7-PbMAKK3-PbMAK1/PbMAK3 cascade may be present in P. brassicae. U0126, a potent and specific inhibitor of MAPKK, could inhibit the germination of P. brassicae resting spores. U0126 was used to treat the resting spores of P. brassicae and coinoculate rapeseed, and was proven to significantly relieve the severity of clubroot symptoms in the host plant and delay the life cycle of P. brassicae. These results suggest that MAPK signaling pathways may play important roles in P. brassicae growth, development, and pathogenicity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinyu Li ◽  
Shan Yang ◽  
Sihua Liu ◽  
Yulu Chen ◽  
Hongyun Liu ◽  
...  

Increasing cases related to the pathogenicity of Enterovirus D68 (EV-D68) have made it a growing worldwide public health concern, especially due to increased severe respiratory illness and acute flaccid myelitis (AFM) in children. There are currently no vaccines or medicines to prevent or treat EV-D68 infections. Herein, we performed genome-wide transcriptional profiling of EV-D68-infected human rhabdomyosarcoma (RD) cells to investigate host-pathogen interplay. RNA sequencing and subsequent experiments revealed that EV-D68 infection induced a profound transcriptional dysregulation of host genes, causing significantly elevated inflammatory responses and altered antiviral immune responses. In particular, triggering receptor expressed on myeloid cells 1 (TREM-1) is involved in highly activated TREM-1 signaling processes, acting as an important mediator in EV-D68 infection, and it is related to upregulation of interleukin 8 (IL-8), IL-6, IL-12p70, IL-1β, and tumor necrosis factor alpha (TNF-α). Further results demonstrated that NF-κB p65 was essential for EV-D68-induced TREM-1 upregulation. Moreover, inhibition of the TREM1 signaling pathway by the specific inhibitor LP17 dampened activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade, suggesting that TREM-1 mainly transmits activation signals to phosphorylate p38 MAPK. Interestingly, treatment with LP17 to inhibit TREM-1 inhibited viral replication and infection. These findings imply the pathogenic mechanisms of EV-D68 and provide critical insight into therapeutic intervention in enterovirus diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Pulak R. Manna ◽  
Douglas M. Stocco

Mitogen-activated protein kinases (MAPKs) comprise a family of serine/threonine kinases that are activated by a large variety of extracellular stimuli and play integral roles in controlling many cellular processes, from the cell surface to the nucleus. The MAPK family includes four distinct MAPK cascades, that is, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase or stress-activated protein kinase, and ERK5. These MAPKs are essentially operated through three-tiered consecutive phosphorylation events catalyzed by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs lie in protein kinase cascades. The MAPK signaling pathways have been demonstrated to be associated with events regulating the expression of the steroidogenic acute regulatory protein (StAR) and steroidogenesis in steroidogenic tissues. However, it has become clear that the regulation of MAPK-dependent StAR expression and steroid synthesis is a complex process and is context dependent. This paper summarizes the current level of understanding concerning the roles of the MAPK signaling cascades in the regulation of StAR expression and steroidogenesis in different steroidogenic cell models.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Sinja Brand ◽  
Hans-Peter Soechting

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were either virulent on clubroot-resistant oilseed rape cv. Mendel (P1 (+)) or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (2 to 10–fold more severe), bigger galls (1.1 to 5.8 fold heavier) and higher number of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus and Raphanus sativus were fully resistant against both isolates, while Camelina sativa, Capsella bursa-pastoris, Coincya momensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, S. arvensis, Sisymbrium altissimum, S. loeselii and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre and Neslia paniculata were completely or partially resistant to P1-isolate but highly susceptible to P1 (+). These results propose that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the build-up of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacatifolia, Papaver rhoeas and Pisum sativum. It can concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 687-687 ◽  
Author(s):  
L. Ren ◽  
X. P. Fang ◽  
C. C. Sun ◽  
K. R. Chen ◽  
F. Liu ◽  
...  

Shepherd's purse (Capsella bursa-pastoris (L.) Medicus) is an edible and wild medicinal plant widely distributed in China. This plant has been cultivated in Shanghai, China, since the end of the 19th century. Infection of C. bursa-pastoris by Plasmodiophora brassicae, the causal agent of clubroot disease on Brassica spp. has been reported in Korea (2), but is not known to occur in China. In February of 2011, stunted and wilted shepherd's purse (SP) plants were observed in a field planted to oilseed rapes (B. napus) in Sichuan Province of China. Symptomatic SP plants also exhibited root galls. Disease incidence was 6.2% and 100% for SP and B. napus, respectively. Root galls on diseased SP plants were collected for pathogen identification. Many resting spores were observed when the root galls were examined under a light microscope. The resting spores were circular in shape, measuring 2.0 to 3.1 μm in diameter (average 2.6 μm). PCR amplification was conducted to confirm the pathogen. DNA was extracted from root galls and healthy roots (control) of SP. Two primers, TC2F (5′-AAACAACGAGTCAGCTTGAATGCTAGTGTG-3′) and TC2R (5′-CTTTAGTTGTGTTTCGGCTAGGATGGTTCG-3′) were used to detect P. brassicae (1). No PCR amplifications were observed with the control DNA as template. A fragment of the expected size (approximately 520 bp) was obtained when DNA was amplified from diseased roots of SP. These results suggest that the pathogen in the galled roots of SP is P. brassicae. Pathogenicity of P. brassicae in SP was tested on plants of both SP and Chinese cabbage (CC) (B. campestris ssp. pekinensis). A resting spore suspension prepared from naturally infected SP roots was mixed with a sterilized soil in two plastic pots, resulting in a final concentration of 5 × 106 spores/g soil. Soil treated with the same volume of sterile water was used as a control. Seeds of SP and CC were pre-germinated on moist filter paper for 2 days (20°C) and seeded into the infested and control pots, one seed per pot for planted for CC and four seeds per pot for SP. The pots were placed in a chamber at 15 to 25°C under 12 h light and 12 h dark. Plants in each pot were uprooted after 4 weeks and the roots of each plant were washed under tap water and rated for clubroot disease. No disease symptoms were observed in the control treatments of SP or CC. Plants of both species showed symptoms of clubroot, with the disease incidence of 62.5% and 100% on SP and CC, respectively. The pathogen was isolated from diseased roots of each plant and confirmed as P. brassicae based on morphological characteristics and PCR detection. To our knowledge, this is the first report of clubroot disease on C. bursa-pastoris in Sichuan Province of China. This finding suggests that it may be necessary to manage C. bursa-pastoris in cruciferous vegetable (cabbage, turnip) and oilseed rape production fields. References: (1) T. Cao et al. Plant Dis. 91:80, 2007. (2) W. G. Kim et al. Microbiology 39:233, 2011.


2005 ◽  
Vol 25 (14) ◽  
pp. 5955-5964 ◽  
Author(s):  
Jinke Cheng ◽  
Dongyu Zhang ◽  
Kihwan Kim ◽  
Yingxin Zhao ◽  
Yingming Zhao ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) cascades are central components of the intracellular signaling networks used by eukaryotic cells to respond to a wide spectrum of extracellular stimuli. An MAPK is activated by an MAPK kinase, which in turn is activated by an MAPK kinase kinase (MAP3K). However, little is known about the molecular aspects of the regulation and activation of large numbers of MAP3Ks that are crucial in relaying upstream receptor-mediated signals through the MAPK cascades to induce various physiological responses. In this study, we identified a novel MEKK2-interacting protein, Mip1, that regulates MEKK2 dimerization and activation by forming a complex with inactive and nonphosphorylated MEKK2. In particular, Mip1 prevented MEKK2 activation by blocking MEKK2 dimer formation, which in turn blocked JNKK2, c-Jun N-terminal kinase 1 (JNK1), extracellular signal-regulated kinase 5, and AP-1 reporter gene activation by MEKK2. Furthermore, we found that the endogenous Mip1-MEKK2 complex was dissociated transiently following epidermal growth factor stimulation. In contrast, the knockdown of Mip1 expression by siRNA augmented the MEKK2-mediated JNK and AP-1 reporter activation. Together, our data suggest a novel model for MEKK2 regulation and activation.


2003 ◽  
Vol 2 (6) ◽  
pp. 1187-1199 ◽  
Author(s):  
Philip Müller ◽  
Gerhard Weinzierl ◽  
Andreas Brachmann ◽  
Michael Feldbrügge ◽  
Regine Kahmann

ABSTRACT In the phytopathogenic fungus Ustilago maydis, pheromone-mediated cell fusion is a prerequisite for the generation of the infectious dikaryon. The pheromone signal elevates transcription of the pheromone genes and elicits formation of conjugation hyphae. Cyclic AMP and mitogen-activated protein kinase (MAPK) signaling are involved in this process. The MAPK cascade is presumed to be composed of Ubc4 (MAPK kinase kinase), Fuz7 (MAPK kinase), and Ubc3/Kpp2 (MAPK). We isolated the kpp4 gene and found it to be allelic to ubc4. Epistasis analyses with constitutively active alleles of kpp4 and fuz7 substantiate that Kpp4, Fuz7, and Kpp2/Ubc3 are components of the same module. Moreover, we demonstrate that Fuz7 activates Kpp2 and shows interactions in vitro. Signaling via this cascade regulates expression of pheromone-responsive genes, presumably through acting on the transcription factor Prf1. Interestingly, the same cascade is needed for conjugation tube formation, and this process does not involve Prf1. In addition, fuz7 as well as kpp4 deletion strains are nonpathogenic, while kpp2 deletion mutants are only attenuated in pathogenesis. Here we show that strains expressing the unphosphorylatable allele kpp2T182A/Y184F are severely affected in tumor induction and display defects in early infection-related differentiation.


2020 ◽  
Author(s):  
Chaoqun Wang ◽  
Aimin Jiang ◽  
Wang Jingjing ◽  
Xiao Liu ◽  
Han Zhen ◽  
...  

Abstract Background Bovine mastitis characterized by mammary gland inflammatory responses, is the most frequent and costly diseases in dairy cattle. Researchers have been seeking effective treatments for this disease, but still not very successful. Ras-related C3 botulinum toxin substrate 1 (Rac1) is implicated in various cellular functions, including apoptosis, ROS production and inflammatory responses, and presents an attractive therapeutic target for many diseases. However, the effects of Rac1 signaling on mastitis remain unclear. The aim of this study is to investigate the effects of Rac1 signaling on mastitis via inhibition by Rac1 specific inhibitor NSC23766 based on a murine model of lipoplysaccharide (LPS)-induced mastitis. Methods Murine mastitis model was established by perfusion of LPS, hematoxylin-eosin (H & E) staining was employed to explore the mechanisms in mouse model, qRT- PCR analysis, Western blotting analysis. Results The results revealed that NSC23766 significantly decreased the damage of mammary gland by LPS, reduced myeloperoxidase activities, and the productions of IL-1β, IL-6, TNF-α and MCP-1 gene expression in the mammary glands with LPS perfusion. Moreover, western blot analysis showed that NSC23766 inhibited the phosphoryation of p65, IκBα, ERK, and p38, and suppressed the expression of NLRP3. Conclusion These findings suggested that administration of NSC23766 prevented the development of mastitis by inhibiting NLRP3, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Accordingly, this study may provide research basis for the development of new drugs against mastitis, and NSC23766 might be a potential therapeutic drugs for mastitis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Karolina Stefanowicz ◽  
Monika Szymanska-Chargot ◽  
William Truman ◽  
Piotr Walerowski ◽  
Marcin Olszak ◽  
...  

Gall formation on the belowground parts of plants infected with Plasmodiophora brassicae is the result of extensive host cellular reprogramming. The development of these structures is a consequence of increased cell proliferation followed by massive enlargement of cells colonized with the pathogen. Drastic changes in cellular growth patterns create local deformities in the roots and hypocotyl giving rise to mechanical tensions within the tissue of these organs. Host cell wall extensibility and recomposition accompany the growth of the gall and influence pathogen spread and also pathogen life cycle progression. Demethylation of pectin within the extracellular matrix may play an important role in P. brassicae-driven hypertrophy of host underground organs. Through proteomic analysis of the cell wall, we identified proteins accumulating in the galls developing on the underground parts of Arabidopsis thaliana plants infected with P. brassicae. One of the key proteins identified was the pectin methylesterase (PME18); we further characterized its expression and conducted functional and anatomic studies in the knockout mutant and used Raman spectroscopy to study the status of pectin in P. brassicae-infected galls. We found that late stages of gall formation are accompanied with increased levels of PME18. We have also shown that the massive enlargement of cells colonized with P. brassicae coincides with decreases in pectin methylation. In pme18-2 knockout mutants, P. brassicae could still induce demethylation; however, the galls in this line were smaller and cellular expansion was less pronounced. Alteration in pectin demethylation in the host resulted in changes in pathogen distribution and slowed down disease progression. To conclude, P. brassicae-driven host organ hypertrophy observed during clubroot disease is accompanied by pectin demethylation in the extracellular matrix. The pathogen hijacks endogenous host mechanisms involved in cell wall loosening to create an optimal cellular environment for completion of its life cycle and eventual release of resting spores facilitated by degradation of demethylated pectin polymers.


2019 ◽  
Vol 20 (14) ◽  
pp. 3427 ◽  
Author(s):  
Jeanne K. DuShane ◽  
Melissa S. Maginnis

The extracellular signal-regulated kinases (ERKs) comprise a particular branch of the mitogen-activated protein kinase cascades (MAPK) that transmits extracellular signals into the intracellular environment to trigger cellular growth responses. Similar to other MAPK cascades, the MAPK-ERK pathway signals through three core kinases—Raf, MAPK/ERK kinase (MEK), and ERK—which drive the signaling mechanisms responsible for the induction of cellular responses from extracellular stimuli including differentiation, proliferation, and cellular survival. However, pathogens like DNA viruses alter MAPK-ERK signaling in order to access DNA replication machineries, induce a proliferative state in the cell, or even prevent cell death mechanisms in response to pathogen recognition. Differential utilization of this pathway by multiple DNA viruses highlights the dynamic nature of the MAPK-ERK pathway within the cell and the importance of its function in regulating a wide variety of cellular fates that ultimately influence viral infection and, in some cases, result in tumorigenesis.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 543 ◽  
Author(s):  
Yu-Lan Fang ◽  
Li-Ming Xia ◽  
Ping Wang ◽  
Li-Hua Zhu ◽  
Jian-Ren Ye ◽  
...  

Mitogen-activated protein kinase (MAPK) signaling pathway plays key roles in sensing extracellular signals and transmitting them from the cell membrane to the nucleus in response to various environmental stimuli. A MAPKKK protein CgMck1 in Colletotrichum gloeosporioides was characterized. Phenotypic analyses of the ∆Cgmck1 mutant showed that the CgMck1 was required for vegetative growth, fruiting body development, and sporulation. Additionally, the CgMCK1 deletion mutant showed significant defects in cell wall integrity, and responses to osmotic stresses. The mutant abolished the ability to develop appressorium, and lost pathogenicity to host plants. The ∆Cgmck1 mutant also exhibited a higher sensitivity to antifungal bacterium agent Bacillus velezensis. The deletion mutants of downstream MAPK cascades components CgMkk1 and CgMps1 showed similar defects to the ∆Cgmck1 mutant. In conclusion, CgMck1 is involved in the regulation of vegetative growth, asexual development, cell wall integrity, stresses resistance, and infection morphogenesis in C. gloeosporioides.


Sign in / Sign up

Export Citation Format

Share Document