scholarly journals The Rhox Homeobox Gene Family Shows Sexually Dimorphic and Dynamic Expression During Mouse Embryonic Gonad Development1

2008 ◽  
Vol 79 (3) ◽  
pp. 468-474 ◽  
Author(s):  
Hinda Daggag ◽  
Terje Svingen ◽  
Patrick S. Western ◽  
Jocelyn A. van den Bergen ◽  
Peter J. McClive ◽  
...  
2007 ◽  
Vol 306 (1) ◽  
pp. 357-358
Author(s):  
Heiner Westphal ◽  
Itai Tzchori ◽  
Timothy F. Day ◽  
Peter J. Carolan ◽  
Yangu Zhao ◽  
...  

2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Gaili Fan ◽  
Huawei Zheng ◽  
Kai Zhang ◽  
Veena Devi Ganeshan ◽  
Stephen Obol Opiyo ◽  
...  

ABSTRACT The homeobox gene family of transcription factors (HTF) controls many developmental pathways and physiological processes in eukaryotes. We previously showed that a conserved HTF in the plant-pathogenic fungus Fusarium graminearum, Htf1 (FgHtf1), regulates conidium morphology in that organism. This study investigated the mechanism of FgHtf1-mediated regulation and identified putative FgHtf1 target genes by a chromatin immunoprecipitation assay combined with parallel DNA sequencing (ChIP-seq) and RNA sequencing. A total of 186 potential binding peaks, including 142 genes directly regulated by FgHtf1, were identified. Subsequent motif prediction analysis identified two DNA-binding motifs, TAAT and CTTGT. Among the FgHtf1 target genes were FgHTF1 itself and several important conidiation-related genes (e.g., FgCON7), the chitin synthase pathway genes, and the aurofusarin biosynthetic pathway genes. In addition, FgHtf1 may regulate the cAMP-protein kinase A (PKA)-Msn2/4 and Ca2+-calcineurin-Crz1 pathways. Taken together, these results suggest that, in addition to autoregulation, FgHtf1 also controls global gene expression and promotes a shift to aerial growth and conidiation in F. graminearum by activation of FgCON7 or other conidiation-related genes. IMPORTANCE The homeobox gene family of transcription factors is known to be involved in the development and conidiation of filamentous fungi. However, the regulatory mechanisms and downstream targets of homeobox genes remain unclear. FgHtf1 is a homeobox transcription factor that is required for phialide development and conidiogenesis in the plant pathogen F. graminearum. In this study, we identified FgHtf1-controlled target genes and binding motifs. We found that, besides autoregulation, FgHtf1 also controls global gene expression and promotes conidiation in F. graminearum by activation of genes necessary for aerial growth, FgCON7, and other conidiation-related genes.


2007 ◽  
Vol 306 (1) ◽  
pp. 313 ◽  
Author(s):  
N.R. Crnkovich ◽  
T.J. DeFalco ◽  
S Le Bras ◽  
A.L. Casper ◽  
M.B. Van Doren

Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 611-624 ◽  
Author(s):  
Hye-Won Song ◽  
Christina T Dann ◽  
John R McCarrey ◽  
Marvin L Meistrich ◽  
Gail A Cornwall ◽  
...  

Homeobox genes encode transcription factors that regulate diverse developmental events. The largest known homeobox gene cluster – the X-linked mouse reproductive homeobox (Rhox) cluster – harbors genes whose expression patterns and functions are largely unknown. Here, we report that a member of this cluster, Rhox10, is expressed in male germ cells. Rhox10 is highly transcribed in spermatogonia in vivo and is upregulated in response to the differentiation-inducing agent retinoic acid in vitro. Using a specific RHOX10 antiserum that we generated, we found that RHOX10 protein is selectively expressed in fetal gonocytes, germline stem cells, spermatogonia, and early spermatocytes. RHOX10 protein undergoes a dramatic shift in subcellular localization as germ cells progress from mitotically arrested gonocytes to mitotic spermatogonia and from mitotic spermatogonia to early meiotic spermatocytes, consistent with RHOX10 performing different functions in these stages.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bingqi Dong ◽  
Jiaming Liang ◽  
Ding Li ◽  
Wenping Song ◽  
Jinbo Song ◽  
...  

Background: Bladder cancer (BLCA) is a common malignant tumor of the genitourinary system, and there is a lack of specific, reliable, and non-invasive tumor biomarker tests for diagnosis and prognosis evaluation. Homeobox genes play a vital role in BLCA tumorigenesis and development, but few studies have focused on the prognostic value of homeobox genes in BLCA. In this study, we aim to develop a prognostic signature associated with the homeobox gene family for BLCA.Methods: The RNA sequencing data, clinical data, and probe annotation files of BLCA patients were downloaded from the Gene Expression Omnibus database and the University of California, Santa Cruz (UCSC), Xena Browser. First, differentially expressed homeobox gene screening between tumor and normal samples was performed using the “limma” and robust rank aggregation (RRA) methods. The mutation data were obtained with the “TCGAmutation” package and visualized with the “maftools” package. Kaplan–Meier curves were plotted with the “survminer” package. Then, a signature was constructed by logistic regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using “clusterProfiler.” Furthermore, the infiltration level of each immune cell type was estimated using the single-sample gene set enrichment analysis (ssGSEA) algorithm. Finally, the performance of the signature was evaluated by receiver-operating characteristic (ROC) curve and calibration curve analyses.Results: Six genes were selected to construct this prognostic model: TSHZ3, ZFHX4, ZEB2, MEIS1, ISL1, and HOXC4. We divided the BLCA cohort into high- and low-risk groups based on the median risk score calculated with the novel signature. The overall survival (OS) rate of the high-risk group was significantly lower than that of the low-risk group. The infiltration levels of almost all immune cells were significantly higher in the high-risk group than in the low-risk group. The average risk score for the group that responded to immunotherapy was significantly lower than that of the group that did not.Conclusion: We constructed a risk prediction signature with six homeobox genes, which showed good accuracy and consistency in predicting the patient’s prognosis and response to immunotherapy. Therefore, this signature can be a potential biomarker and treatment target for BLCA patients.


Open Biology ◽  
2013 ◽  
Vol 3 (4) ◽  
pp. 130035 ◽  
Author(s):  
Jeeyeon Cha ◽  
Xiaofei Sun ◽  
Amanda Bartos ◽  
Jane Fenelon ◽  
Pavine Lefèvre ◽  
...  

Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2 , members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice — it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx . These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness.


1999 ◽  
Vol 11 (9) ◽  
pp. 1651-1663 ◽  
Author(s):  
Naoki Sentoku ◽  
Yutaka Sato ◽  
Nori Kurata ◽  
Yukihiro Ito ◽  
Hidemi Kitano ◽  
...  

2019 ◽  
Vol 20 (24) ◽  
pp. 6343 ◽  
Author(s):  
Xu Cao ◽  
Honglei Yang ◽  
Chunqiong Shang ◽  
Sang Ma ◽  
Li Liu ◽  
...  

Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.


Sign in / Sign up

Export Citation Format

Share Document