scholarly journals FgHtf1 Regulates Global Gene Expression towards Aerial Mycelium and Conidiophore Formation in the Cereal Fungal Pathogen Fusarium graminearum

2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Gaili Fan ◽  
Huawei Zheng ◽  
Kai Zhang ◽  
Veena Devi Ganeshan ◽  
Stephen Obol Opiyo ◽  
...  

ABSTRACT The homeobox gene family of transcription factors (HTF) controls many developmental pathways and physiological processes in eukaryotes. We previously showed that a conserved HTF in the plant-pathogenic fungus Fusarium graminearum, Htf1 (FgHtf1), regulates conidium morphology in that organism. This study investigated the mechanism of FgHtf1-mediated regulation and identified putative FgHtf1 target genes by a chromatin immunoprecipitation assay combined with parallel DNA sequencing (ChIP-seq) and RNA sequencing. A total of 186 potential binding peaks, including 142 genes directly regulated by FgHtf1, were identified. Subsequent motif prediction analysis identified two DNA-binding motifs, TAAT and CTTGT. Among the FgHtf1 target genes were FgHTF1 itself and several important conidiation-related genes (e.g., FgCON7), the chitin synthase pathway genes, and the aurofusarin biosynthetic pathway genes. In addition, FgHtf1 may regulate the cAMP-protein kinase A (PKA)-Msn2/4 and Ca2+-calcineurin-Crz1 pathways. Taken together, these results suggest that, in addition to autoregulation, FgHtf1 also controls global gene expression and promotes a shift to aerial growth and conidiation in F. graminearum by activation of FgCON7 or other conidiation-related genes. IMPORTANCE The homeobox gene family of transcription factors is known to be involved in the development and conidiation of filamentous fungi. However, the regulatory mechanisms and downstream targets of homeobox genes remain unclear. FgHtf1 is a homeobox transcription factor that is required for phialide development and conidiogenesis in the plant pathogen F. graminearum. In this study, we identified FgHtf1-controlled target genes and binding motifs. We found that, besides autoregulation, FgHtf1 also controls global gene expression and promotes conidiation in F. graminearum by activation of genes necessary for aerial growth, FgCON7, and other conidiation-related genes.

2018 ◽  
Vol 115 (48) ◽  
pp. E11321-E11330 ◽  
Author(s):  
Jie Hou ◽  
Xiaowen Shi ◽  
Chen Chen ◽  
Md. Soliman Islam ◽  
Adam F. Johnson ◽  
...  

Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.


2021 ◽  
pp. 1-13
Author(s):  
Francis Poulat

In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Debra Rossouw ◽  
Skye P. Meiring ◽  
Florian F. Bauer

ABSTRACTPhysical contact between yeast species, in addition to better-understood and reported metabolic interactions, has recently been proposed to significantly impact the relative fitness of these species in cocultures. Such data have been generated by using membrane bioreactors, which physically separate two yeast species. However, doubts persist about the degree that the various membrane systems allow for continuous and complete metabolic contact, including the exchange of proteins. Here, we provide independent evidence for the importance of physical contact by using a genetic system to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Such adhesion is controlled by a family of structurally related cell wall proteins encoded by theFLOgene family. As previously shown, the expression of specific members of theFLOgene family inSaccharomyces cerevisiaedramatically changes the coadhesion patterns between this yeast and other yeast species. Here, we use this differential aggregation mediated byFLOgenes as a model to assess the impact of physical contact between different yeast species on the relative fitness of these species in simplified ecosystems. The identity of theFLOgene has a marked effect on the persistence of specific non-Saccharomycesyeasts over the course of extended growth periods in batch cultures. Remarkably,FLO1andFLO5expression often result in opposite outcomes. The data provide clear evidence for the role of physical contact in multispecies yeast ecosystems and suggest thatFLOgene expression may be a major factor in such interactions.IMPORTANCEThe impact of direct (physical) versus indirect (metabolic) interactions between different yeast species has attracted significant research interest in recent years. This is due to the growing interest in the use of multispecies consortia in bioprocesses of industrial relevance and the relevance of interspecies interactions in establishing stable synthetic ecosystems. Compartment bioreactors have traditionally been used in this regard but suffer from numerous limitations. Here, we provide independent evidence for the importance of physical contact by using a genetic system, based on theFLOgene family, to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Our results show that interspecies contact significantly impacts population dynamics and the survival of individual species. Remarkably, different members of theFLOgene family often lead to very different population outcomes, further suggesting thatFLOgene expression may be a major factor in such interactions.


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2013 ◽  
Vol 13 (1) ◽  
pp. 154-169 ◽  
Author(s):  
Zheng Wang ◽  
Francesc Lopez-Giraldez ◽  
Nina Lehr ◽  
Marta Farré ◽  
Ralph Common ◽  
...  

ABSTRACTFungi can serve as highly tractable models for understanding genetic basis of sexual development in multicellular organisms. Applying a reverse-genetic approach to advance such a model, we used random and multitargeted primers to assay gene expression across perithecial development inNeurospora crassa. We found that functionally unclassified proteins accounted for most upregulated genes, whereas downregulated genes were enriched for diverse functions. Moreover, genes associated with developmental traits exhibited stage-specific peaks of expression. Expression increased significantly across sexual development for mating type genemat a-1and format A-1specific pheromone precursorccg-4. In addition, expression of a gene encoding a protein similar to zinc finger,stc1, was highly upregulated early in perithecial development, and a strain with a knockout of this gene exhibited arrest at the same developmental stage. A similar expression pattern was observed for genes in RNA silencing and signaling pathways, and strains with knockouts of these genes were also arrested at stages of perithecial development that paralleled their peak in expression. The observed stage specificity allowed us to correlate expression upregulation and developmental progression and to identify regulators of sexual development. Bayesian networks inferred from our expression data revealed previously known and new putative interactions between RNA silencing genes and pathways. Overall, our analysis provides a fine-scale transcriptomic landscape and novel inferences regarding the control of the multistage development process of sexual crossing and fruiting body development inN. crassa.


2020 ◽  
Vol 48 (20) ◽  
pp. 11347-11369
Author(s):  
Adam B Zaborowski ◽  
Dirk Walther

Abstract While transcription factors (TFs) are known to regulate the expression of their target genes (TGs), only a weak correlation of expression between TFs and their TGs has generally been observed. As lack of correlation could be caused by additional layers of regulation, the overall correlation distribution may hide the presence of a subset of regulatory TF–TG pairs with tight expression coupling. Using reported regulatory pairs in the plant Arabidopsis thaliana along with comprehensive gene expression information and testing a wide array of molecular features, we aimed to discern the molecular determinants of high expression correlation of TFs and their TGs. TF-family assignment, stress-response process involvement, short genomic distances of the TF-binding sites to the transcription start site of their TGs, few required protein-protein-interaction connections to establish physical interactions between the TF and polymerase-II, unambiguous TF-binding motifs, increased numbers of miRNA target-sites in TF-mRNAs, and a young evolutionary age of TGs were found particularly indicative of high TF–TG correlation. The modulating roles of post-transcriptional, post-translational processes, and epigenetic factors have been characterized as well. Our study reveals that regulatory pairs with high expression coupling are associated with specific molecular determinants.


2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Ryan R. Chaparian ◽  
Alyssa S. Ball ◽  
Julia C. van Kessel

ABSTRACT In vibrios, quorum sensing controls hundreds of genes that are required for cell density-specific behaviors including bioluminescence, biofilm formation, competence, secretion, and swarming motility. The central transcription factor in the quorum-sensing pathway is LuxR/HapR, which directly regulates ∼100 genes in the >400-gene regulon of Vibrio harveyi. Among these directly controlled genes are 15 transcription factors, which we predicted would comprise the second tier in the hierarchy of the LuxR regulon. We confirmed that LuxR binds to the promoters of these genes in vitro and quantified the extent of LuxR activation or repression of transcript levels. Transcriptome sequencing (RNA-seq) indicates that most of these transcriptional regulators control only a few genes, with the exception of MetJ, which is a global regulator. The genes regulated by these transcription factors are predicted to be involved in methionine and thiamine biosynthesis, membrane stability, RNA processing, c-di-GMP degradation, sugar transport, and other cellular processes. These data support a hierarchical model in which LuxR directly regulates 15 transcription factors that drive the second level of the gene expression cascade to influence cell density-dependent metabolic states and behaviors in V. harveyi. IMPORTANCE Quorum sensing is important for survival of bacteria in nature and influences the actions of bacterial groups. In the relatively few studied examples of quorum-sensing-controlled genes, these genes are associated with competition or cooperation in complex microbial communities and/or virulence in a host. However, quorum sensing in vibrios controls the expression of hundreds of genes, and their functions are mostly unknown or uncharacterized. In this study, we identify the regulators of the second tier of gene expression in the quorum-sensing system of the aquaculture pathogen Vibrio harveyi. Our identification of regulatory networks and metabolic pathways controlled by quorum sensing can be extended and compared to other Vibrio species to understand the physiology, ecology, and pathogenesis of these organisms.


2019 ◽  
Vol 25 (9) ◽  
pp. 572-585 ◽  
Author(s):  
Lynda K Harris ◽  
Priyadarshini Pantham ◽  
Hannah E J Yong ◽  
Anita Pratt ◽  
Anthony J Borg ◽  
...  

Abstract Fetal growth restriction (FGR) is caused by poor placental development and function early in gestation. It is well known that placentas from women with FGR exhibit reduced cell growth, elevated levels of apoptosis and perturbed expression of the growth factors, cytokines and the homeobox gene family of transcription factors. Previous studies have reported that insulin-like growth factor-2 (IGF2) interacts with its receptor-2 (IGF2R) to regulate villous trophoblast survival and apoptosis. In this study, we hypothesized that human placental IGF2R-mediated homeobox gene expression is altered in FGR and contributes to abnormal trophoblast function. This study was designed to determine the association between IGF2R, homeobox gene expression and cell survival in pregnancies affected by FGR. Third trimester placentas were collected from FGR-affected pregnancies (n = 29) and gestation matched with control pregnancies (n = 30). Functional analyses were then performed in vitro using term placental explants (n = 4) and BeWo trophoblast cells. mRNA expression was determined by real-time PCR, while protein expression was examined by immunoblotting and immunohistochemistry. siRNA transfection was used to silence IGF2R expression in placental explants and the BeWo cell-line. cDNA arrays were used to screen for downstream targets of IGF2R, specifically homeobox gene transcription factors and apoptosis-related genes. Functional effects of silencing IGF2R were then verified by β-hCG ELISA, caspase activity assays and a real-time electrical cell-impedance assay for differentiation, apoptosis and cell growth potential, respectively. IGF2R expression was significantly decreased in placentas from pregnancies complicated by idiopathic FGR (P < 0.05 versus control). siRNA-mediated IGF2R knockdown in term placental explants and the trophoblast cell line BeWo resulted in altered expression of homeobox gene transcription factors, including increased expression of distal-less homeobox gene 5 (DLX5), and decreased expression of H2.0-Like Homeobox 1 (HLX) (P < 0.05 versus control). Knockdown of IGF2R transcription increased the expression and activity of caspase-6 and caspase-8 in placental explants, decreased BeWo proliferation and increased BeWo differentiation (all P < 0.05 compared to respective controls). This is the first study linking IGF2R placental expression with changes in the expression of homeobox genes that control cellular signalling pathways responsible for increased trophoblast cell apoptosis, which is a characteristic feature of FGR.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2178-2178
Author(s):  
Goran Karlsson ◽  
Yingchun Liu ◽  
Marie-José Goumans ◽  
Jonas Larsson ◽  
Ju-Seog Lee ◽  
...  

Abstract In the hematopoietic system, TGF-β1 is one of the most potent extrinsic regulators, affecting both early progenitors and committed cells. At the top of the hematopoietic hierarchy, TGF-β1 maintains hematopoietic stem cells (HSCs) in quiescence in vitro through transcriptional regulation of genes encoding proteins important in the cell cycle. We have shown that TGF-β receptor I (TβRI) −/− HSCs exhibit increased proliferative capacity in vitro and that TβRII−/− mice develop a multifocal autoimmune disease, mainly mediated by T-cells (Larsson et al, 2003, Levéen et al 2002). The mechanisms of TGF-β signaling in hematopoietic cells are poorly understood and many target genes of TGF-β signaling remain elusive. In this study we have used global gene expression analysis to investigate whether all TGF-β signaling is mediated by TβRI and II. Furthermore, we asked what target genes are affected upon TGF-β stimulation in normal and TGF-β signaling deficient murine embryonic fibroblasts (MEFs). MEFs were grown with and without TGF-β1 stimulation and proliferation, transcriptional responses and expression analysis were performed. We demonstrate through Western Blot analysis, luciferase reporter assays and cell expansion experiments how these cells lack functional TβRI. Additionally, transcriptional assays show that no other Smad activity is triggered by TGF-β1 stimulation. Furthermore, we demonstrate through quantitative RT-PCR that the inhibitor of differentiation family of genes, known targets of TGF-β signaling, are not affected by TGF-β1 in TβRI−/− MEFs, while wt cells downregulate these genes 4–8.5 fold in response to stimulation. In order to completely exclude alternative receptors outside the TGF-β superfamily and signaling pathways activated through TβRII alone, we performed global gene expression profiling on TGF-β1 stimulated TβRI−/− MEFs with unstimulated TβRI deficient cells as reference. Very few (0.05 %) of the more than 37,000 spots on the microarray had a >2 fold differential expression in the two experiments conducted. Similar experiments performed on wt cells resulted in differential expression of between 2.6–3.9 % of the genes printed. From this data we conclude that no signaling affecting gene expression occur in the absence of TβRI in these cells. Additionally we present transcriptional profiles of MEF cell lines that either are normal or are TβRI deficient. By means of cDNA microarray technology, we have identified genes that were differentially expressed when TβRI deficient fibroblasts were compared to wt cells stimulated with TGF-β1. Our results create a data base of 461 significantly differentially expressed (p<0.01) target genes of TGF-β signaling. These include genes potentially responsible for the growth arrest induced by TGF-β1, like Gadd45g, Gas5, Id1, Id2 and Id3. However, the most significantly enriched number of differentially expressed genes are involved in protein folding and chaperone activities (Hspa9a, Hsp105, Hspe1, Hsp60, Cct2, Cct3, Cct8, Tcp1 and Dnaja1. Studies to identify TGF-β signaling responsive genes in HSCs are in progress.


Sign in / Sign up

Export Citation Format

Share Document