PCSK9 REDUCES HEPATIC LIPID CONTENT AND CONFERS PROTECTION AGAINST ER STRESS AND ROS IN HEPG2 CELLS

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Jae Hyun Byun ◽  
Paul Lebeau ◽  
Ali Al‐Hashimi ◽  
Khrystyna C. Platko ◽  
Bernardo Trigatti ◽  
...  
Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2820-2830 ◽  
Author(s):  
Rafael Simó ◽  
Cristina Saez-Lopez ◽  
Albert Lecube ◽  
Cristina Hernandez ◽  
Jose Manuel Fort ◽  
...  

Epidemiological studies have shown that plasma SHBG levels correlate with plasma adiponectin levels, both in men and women. There are no reports describing any molecular mechanism by which adiponectin regulates hepatic SHBG production. The aim of the present study is to explore whether adiponectin regulates SHBG production by increasing HNF-4α levels through reducing hepatic lipid content. For this purpose, in vitro studies using human HepG2 cells, as well as human liver biopsies, were performed. Our results show that adiponectin treatment increased SHBG production via AMPK activation in HepG2 cells. Adiponectin treatment decreased the mRNA and protein levels of enzymes related to hepatic lipogenesis (ACC) and increased those related to fatty acid oxidation (ACOX and CPTI). These adiponectin-induced changes in hepatic enzymes resulted in a reduction of total TG and FFA and an increase of HNF-4α. When HNF-4α expression was silenced by using siRNA, adiponectin-induced SHBG overexpression was blocked. Furthermore, adiponectin-induced upregulation of SHBG production via HNF-4α overexpression was abrogated by the inhibition of fatty acid oxidation or by the induction of lipogenesis with a 30mM glucose treatment in HepG2 cells. Finally, adiponectin levels correlated positively and significantly with both HNF-4α and SHBG mRNA levels in human liver biopsies. Our results suggest for the first time that adiponectin increases SHBG production by activating AMPK, which reduces hepatic lipid content and increases HNF-4α levels.


Science ◽  
2021 ◽  
Vol 373 (6554) ◽  
pp. eabj1696
Author(s):  
Charles Brenner

Yoshino et al. (Reports, 11 June 2021, p. 1224) have reported that nicotinamide mononucleotide (NMN) increases muscle insulin sensitivity in prediabetic women. However, the 13 women who received NMN had hepatic lipid content of 6.3 ± 1.2%, whereas the 12 in the placebo group had 14.8 ± 2.0% (P = 0.003). Given that a target of NMN is liver fat clearance, this was not an effectively randomized trial.


2018 ◽  
Vol 315 (2) ◽  
pp. E218-E228 ◽  
Author(s):  
Difei Wang ◽  
Huiying Cong ◽  
Xiaoli Wang ◽  
Yanli Cao ◽  
Shoichiro Ikuyama ◽  
...  

PycnogenolR (PYC), a combination of active flavonoids derived from French maritime pine bark, is a natural antioxidant that has various pharmacological activities. Here, we investigated the beneficial effect of PYC on diet-induced hepatic steatosis. Apolipoprotein E (ApoE)-deficient male mice were administered PYC at oral doses of 30 or 100 mg·kg−1·day−1 for 2 wk in advance and were then fed a high-cholesterol and -fat diet (HCD) for 8 wk. Biochemical, immunohistochemical, and gene expression analyses were conducted to explore the effect of PYC on lipid metabolism in ApoE-deficient mice on a HCD. Short-term treatment with HCD in ApoE-deficient mice induced hepatic injuries, such as lipid metabolism disorder and hepatic histopathological changes. We found that PYC reduced body weight and the increase of serum lipids that had been caused by HCD. Supplementation of PYC significantly reduced lipid deposition in the liver, as shown by the lowered hepatic lipid content and histopathological lesions. We subsequently detected genes related to lipid metabolism and inflammatory cytokines. The study showed that PYC markedly suppressed the expression of genes related to hepatic lipogenesis, fatty acid uptake, and lipid storage while increasing the lipolytic gene, which thus reduced hepatic lipid content. Furthermore, PYC mainly reduced the expression of inflammatory cytokines and the infiltration of inflammatory cells, which were resistant to the development of hepatic steatosis. These results demonstrate that PYC protects against the occurrence and development of hepatic steatosis and may provide a new prophylactic approach for nonalcoholic fatty liver disease (NAFLD).


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Weidong Xu ◽  
Jiayao Li ◽  
Weipeng Qi ◽  
Ye Peng

Apigenin-8-C-glucoside (vitexin), a natural phytochemical contained in hawthorn, has been reported to have versatile beneficial bioactivities, such as antioxidation, anticancer property, and adipogenesis inhibition. The present research aimed to determine the influence of vitexin on insulin resistance elicited by HFD in mice and HepG2 cells. Vitexin markedly alleviated body weight gain and improved glucose and insulin intolerance induced by HFD. Vitexin partially normalized blood glucose, cholesterol, TNF-α, and hepatic lipid content. Moreover, vitexin recovered the reduced glucose uptake induced by glucosamine. The present results indicate that vitexin prevents HFD-induced insulin resistance.


2018 ◽  
Vol 101 (2) ◽  
pp. 1379-1387 ◽  
Author(s):  
M.M. Fry ◽  
B. Yao ◽  
C. Ríos ◽  
C. Wong ◽  
S. Mann ◽  
...  

2020 ◽  
Author(s):  
Oana P. Zaharia ◽  
Klaus Strassburger ◽  
Birgit Knebel ◽  
Yuliya Kupriyanova ◽  
Yanislava Karusheva ◽  
...  

<a><b>Objective</b></a>: The rs738409(G) single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (<i>PNPLA3</i>) gene associates with increased risk and progression of nonalcoholic fatty liver disease (NAFLD). As the recently-described severe insulin-resistant diabetes (SIRD) cluster specifically relates to NAFLD, this study examined whether this SNP differently associates with hepatic lipid content (HCL) and insulin sensitivity in recent-onset diabetes mellitus. <p><b>Research Design and Methods</b>: A total of 917 participants of the German Diabetes Study underwent genotyping, hyperinsulinemic-euglycemic clamps with stable isotopic tracer dilution and magnetic resonance spectroscopy. </p> <p><b>Results:</b> The G allele associated positively with HCL (β=0.36, p<0.01), independent of age, sex and BMI across the whole cohort, but not in the individual clusters. SIRD exhibited lowest whole-body insulin sensitivity compared to severe insulin-deficient (SIDD), moderate obesity-related (MOD), moderate age-related (MARD) and severe autoimmune diabetes clusters (SAID; all p<0.001). Interestingly, SIRD presented with higher prevalence of the rs738409(G) SNP compared to other clusters and the glucose-tolerant control group (p<0.05). HCL was higher in SIRD [13.6 (5.8;19.1)%] compared to MOD [6.4 (2.1;12.4)%, p<0.05], MARD [3.0 (1.0;7.9)%, p<0.001], SAID [0.4 (0.0;1.5)%, p<0.001] and the glucose tolerant group [0.9 (0.4;4.9)%, p<0.001]. Although the <i>PNPLA3</i> polymorphism did not directly associate with whole-body insulin sensitivity in SIRD, the G allele carriers had higher circulating free fatty acid concentrations and greater adipose-tissue insulin resistance compared to non-carriers (both p<0.001).</p> <b>Conclusions:</b> Members of the severe insulin resistant diabetes cluster are more frequently carriers of the rs738409(G) variant. The SNP-associated adipose-tissue insulin resistance and excessive lipolysis may contribute to their NAFLD.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1906-P
Author(s):  
AMY M. GOSS ◽  
SHIMA DOWLA ◽  
AMBIKA P. ASHRAF ◽  
MARK BOLDING ◽  
SHANNON A. MORRISON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document