Fc‐RECEPTOR CROSSLINKING STIMULATES CELL CYCLE PROGRESSION OF MACROPHAGES VIA THE ERK PATHWAY

2008 ◽  
Vol 22 (S2) ◽  
pp. 545-545
Author(s):  
Yong Luo ◽  
Arturo Casadevall
2020 ◽  
Vol 11 (16) ◽  
pp. 4662-4670
Author(s):  
Miao Zhang ◽  
Saifei He ◽  
Xing Ma ◽  
Ying Ye ◽  
Guoyu Wang ◽  
...  

2002 ◽  
Vol 22 (20) ◽  
pp. 7226-7241 ◽  
Author(s):  
Elisabeth C. Roberts ◽  
Paul S. Shapiro ◽  
Theresa Stines Nahreini ◽  
Gilles Pages ◽  
Jacques Pouyssegur ◽  
...  

ABSTRACT Mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase (PI3K) pathways are necessary for cell cycle progression into S phase; however the importance of these pathways after the restriction point is poorly understood. In this study, we examined the regulation and function of extracellular signal-regulated kinase (ERK) and PI3K during G2/M in synchronized HeLa and NIH 3T3 cells. Phosphorylation and activation of both the MAP kinase kinase/ERK and PI3K/Akt pathways occur in late S and persist until the end of mitosis. Signaling was rapidly reversed by cell-permeable inhibitors, indicating that both pathways are continuously activated and rapidly cycle between active and inactive states during G2/M. The serum-dependent behavior of PI3K/Akt versus ERK pathway activation indicates that their mechanisms of regulation differ during G2/M. Effects of cell-permeable inhibitors and dominant-negative mutants show that both pathways are needed for mitotic progression. However, inhibiting the PI3K pathway interferes with cdc2 activation, cyclin B1 expression, and mitotic entry, whereas inhibiting the ERK pathway interferes with mitotic entry but has little effect on cdc2 activation and cyclin B1 and retards progression from metaphase to anaphase. Thus, our study provides novel evidence that ERK and PI3K pathways both promote cell cycle progression during G2/M but have different regulatory mechanisms and function at distinct times.


2001 ◽  
Vol 114 (14) ◽  
pp. 2553-2560 ◽  
Author(s):  
Martin Alexander Schwartz ◽  
Richard K. Assoian

Cell cycle progression in mammalian cells is strictly regulated by both integrin-mediated adhesion to the extracellular matrix and by binding of growth factors to their receptors. This regulation is mediated by G1 phase cyclin-dependent kinases (CDKs), which are downstream of signaling pathways under the integrated control of both integrins and growth factor receptors. Recent advances demonstrate a surprisingly diverse array of integrin-dependent signals that are channeled into the regulation of the G1 phase CDKs. Regulation of cyclin D1 by the ERK pathway may provide a paradigm for understanding how cell adhesion can determine cell cycle progression.


Cell Cycle ◽  
2010 ◽  
Vol 9 (8) ◽  
pp. 1629-1638 ◽  
Author(s):  
Linda S. Steelman ◽  
Stephen L. Abrams ◽  
John G. Shelton ◽  
William H. Chappell ◽  
Jörg Bäsecke ◽  
...  

2020 ◽  
Vol 40 (3) ◽  
Author(s):  
Quan Zhang ◽  
Shujie Cheng ◽  
Liye Cao ◽  
Jihong Yang ◽  
Yu Wang ◽  
...  

Abstract Objective: To study the role of long non-coding RNA (lncRNA) LINC00978 in hepatocellular carcinoma (HCC) carcinogenesis. Materials and methods: LINC00978 expression level was measured by reverse transcription quantitative real-time PCR (RT-qPCR) in HCC tissues and adjacent healthy liver tissues from 49 HCC patients. MTT assay, colony forming assay, and flow cytometry were performed to evaluate the effects of shRNA-mediated LINC00978 knockdown on HCC cell proliferation, cell cycle progression, and apoptosis in vitro. Xenograft tumor model was performed to determine the effects of LINC00978 knockdown on HCC tumor growth in vivo. Western blot was used to assess the activation of signaling molecules in the apoptosis and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Results: LINC00978 expression was significantly up-regulated in human HCC tissue relative to adjacent normal tissue, and LINC00978 high expression was correlated with poor HCC overall survival. LINC00978 was up-regulated in HCC cell lines. ShRNA-mediated LINC00978 knockdown significantly decreased HCC cell proliferation, and induced HCC cell cycle arrest and apoptosis in vitro. LINC00978 knockdown led to significant decrease in tumor xenograft size in vivo. Western blots revealed LINC00978 inhibition decreased ERK, p38, and c-Jun N-terminal kinase (JNK) phosphorylation in HCC cells. Conclusions: LINC00978 is highly expressed in human HCC tissue and correlates with poor HCC prognosis. LINC00978 promotes HCC cell proliferation, cell cycle progression, and survival, partially by activating the MAPK/ERK pathway. Our findings partially elucidated the roles of LINC00978 in HCC carcinogenesis, and identified a therapeutic target for HCC.


2004 ◽  
Vol 200 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Joao T. Barata ◽  
Ana Silva ◽  
Joana G. Brandao ◽  
Lee M. Nadler ◽  
Angelo A. Cardoso ◽  
...  

Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.


2004 ◽  
Vol 24 (3) ◽  
pp. 1206-1218 ◽  
Author(s):  
Lionel Le Gallic ◽  
Laura Virgilio ◽  
Philip Cohen ◽  
Benoit Biteau ◽  
George Mavrothalassitis

ABSTRACT The ets domain transcriptional repressor ERF is an effector of the receptor tyrosine kinase/Ras/Erk pathway, which, it has been suggested, is regulated by subcellular localization as a result of Erk-dependent phosphorylation and is capable of suppressing cell proliferation and ras-induced tumorigenicity. Here, we analyze the effect of ERF phosphorylation on nuclear import and export, the timing of its phosphorylation and dephosphorylation in relation to its subcellular location, Erk activity, and the requirements for ERF-induced cell cycle arrest. Our findings indicate that ERF continuously shuttles between the nucleus and the cytoplasm and that both phosphorylation and dephosphorylation of ERF occur within the nucleus. While nuclear import is not affected by phosphorylation, ERF nuclear export and cytoplasmic release require multisite phosphorylation and dephosphorylation. ERF export is CRM1 dependent, although ERF does not have a detectable nuclear export signal. ERF phosphorylation and export correlate with the levels of nuclear Erk activity. The cell cycle arrest induced by nonphosphorylated ERF requires the wild-type retinoblastoma protein and can be suppressed by overexpression of cyclin. These data suggest that ERF may be a very sensitive and constant sensor of Erk activity that can affect cell cycle progression through G1, providing another link between the Ras/Erk pathway and cellular proliferation.


Sign in / Sign up

Export Citation Format

Share Document