scholarly journals Ripening of cheddar cheese with Lactobacillus helveticus as adjunct culture produces peptides that protect human vein endothelial cells against inflammatory markers relevant to cardiovascular disease (1034.12)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Shreeya Ravisankar ◽  
Jialing Yuan ◽  
Gerhard Munske ◽  
Giuliana Noratto
2008 ◽  
Vol 28 (01/02) ◽  
pp. 85-88 ◽  
Author(s):  
D. Fuchs ◽  
H. Daniel ◽  
U. Wenzel

SummaryEpidemiological studies indicate that the consumption of soy-containing food may prevent or slow-down the development of cardiovascular disease. In endothelial cells application of a soy extract or a combination of the most abundant soy isoflavones genistein and daidzein both inhibited apoptosis, a driving force in atherosclerosis development, when applied in combination with oxidized LDL or homocysteine. Proteome analysis revealed that the stressorinduced alteration of protein expression profile was reversed by the soy extract or the genistein/daidzein mixture. Only few protein entities that could be functionally linked to mitochondrial dysfunction were regulated in common by both application forms of isoflavones. A dietary intervention with isoflavone-enriched soy extract in postmenopausal women, who generally show strongly increased cardiovascular risk due to diminished estrogen production, led to significant alterations in the steady state levels of proteins from mononuclear blood cells. The proteins identified by proteome analysis revealed that soy isoflavones may increase the anti-inflammatory response in blood mononuclear cells thereby contributing to the atherosclerosispreventive activities of a soy-rich diet. Conclusion: By proteome analysis protein targets were identified in vitro in endothelial cells that respond to soy isoflavones and that may decipher molecular mechanisms through which soy products exert their protective effects in the vasculature.


1984 ◽  
Vol 51 (03) ◽  
pp. 385-387 ◽  
Author(s):  
Clive J Dix ◽  
David G Hassall ◽  
K Richard Bruckdorfer

SummaryPlatelet-rich plasma was obtained 24 hr after the race ended from athletes who ran in the London marathon. The platelets were only marginally less sensitive to adrenaline than were those of non-runners using conventional aggregation tests. However, the runners’ platelets were much more sensitive to inhibition by prostacyclin, a prostaglandin synthesized by endothelial cells. It appeared that this effect was due to a greater activity in the platelets of the membrane-bound adenylate cyclase enzyme which generates intracellular cyclic AMP. Cyclic AMP production is known to be stimulated by prostacyclin and to cause the inhibition of platelet aggregation. The results indicate another possible protective effect of exercise against cardiovascular disease which is independent of the known changes in lipoprotein concentrations previously observed in athletes.


2009 ◽  
pp. 1-5 ◽  
Author(s):  
Ljiljana Kocoska-Maras ◽  
Angelica Linden Hirschberg ◽  
Birgitta Bystrom ◽  
Bo Von Schoultz ◽  
Angelique Floter Rådestad

LWT ◽  
2021 ◽  
pp. 110866
Author(s):  
Wanshuang Yang ◽  
Xinyue Hao ◽  
Xiuxiu Zhang ◽  
Gengxu Zhang ◽  
Xiaodong Li ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
Yaser H.A. Elewa ◽  
Osamu Ichii ◽  
Teppei Nakamura ◽  
Yasuhiro Kon

Diabetes is a devastating global health problem and is considered a predisposing factor for lung injury progression. Furthermore, previous reports of the authors revealed the role of mediastinal fat-associated lymphoid clusters (MFALCs) in advancing respiratory diseases. However, no reports concerning the role of MFALCs on the development of lung injury in diabetes have been published. Therefore, this study aimed to examine the correlations between diabetes and the development of MFALCs and the progression of lung injury in a streptozotocin-induced diabetic mouse model. Furthermore, immunohistochemical analysis for immune cells (CD3+ T-lymphocytes, B220+ B-lymphocytes, Iba1+ macrophages, and Gr1+ granulocytes), vessels markers (CD31+ endothelial cells and LYVE-1+ lymphatic vessels “LVs”), and inflammatory markers (TNF-α and IL-5) was performed. In comparison to the control group, the diabetic group showed lung injury development with a significant increase in MFALC size, immune cells, LVs, and inflammatory marker, and a considerable decrease of CD31+ endothelial cells in both lung and MFALCs was observed. Furthermore, the blood glucose level showed significant positive correlations with MFALCs size, lung injury, immune cells, inflammatory markers, and LYVE-1+ LVs in lungs and MFALCs. Thus, we suggest that the development of MFALCs and LVs could contribute to lung injury progression in diabetic conditions.


Endothelium ◽  
2006 ◽  
Vol 13 (5) ◽  
pp. 341-352 ◽  
Author(s):  
C. Krishna Prasad ◽  
K. Jayakumar ◽  
Lissy K. Krishnan

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Hua-Chen Chan ◽  
Liang-Yin Ke ◽  
Hsiu-Chuan Chan ◽  
Hung Su ◽  
An-Sheng Lee ◽  
...  

Background: Patients with systemic lupus erythematosus (SLE) are twice more likely to develop cardiovascular disease than the general population, even though their plasma LDL cholesterol (LDL-C) levels are usually not elevated. To delineate the mechanisms, we examined the chemical properties of their LDL. Methods and Results: LDL isolated from SLE patients (LDL-C, 105±33 mg/dL; n=24) exhibited greater mobility in agarose gel electrophoresis than LDL of healthy control subjects (LDL-C, 121±25 mg/dL; n=24), secondary to an increased distribution of L5 (2.30±1.3% vs. 0.7±0.3%; P <0.0001), the most electronegative subfraction of LDL identified by anion-exchange chromatography, in total LDL. CX3CL1 is a membrane-bound chemokine expressed in injured endothelial cells (ECs). CD16 + monocytes are CX3CR1-expressing cells that recognize CX3CL1. Compared with control, SLE patients had a twofold ( P <0.001) increase in CX3CL1 and a threefold ( P <0.0001) increase in CD16 + monocytes in the plasma. Moreover, there was a positive correlation between the CX3CL1 and L5 levels (R=0.45; P <0.018). MALDI/TOF mass spectrometry of the lipid extracted from SLE-LDL revealed a shift from phosphatidylcholines (PCs) to lyso-PCs (LPCs), including m/ z 496.33, 524.36, 537.01, 550.94, when compared with the lipid of control LDL (Figure). The shift was especially prominent in L5. Exposing human aortic ECs to L5 but not normal LDL resulted in a fivefold ( P <0.0001) increase in CX3CL1 expression with concomitant apoptosis. These effects of L5 were significantly attenuated by blocking the platelet-activating receptor, confirming the role of phospholipids in L5’s bioactivity. Conclusions: The increased distribution of LPC-rich electronegative LDL, which induces CX3CL1-CX3CR1 interactions between vascular cells, may contribute to the increased cardiovascular disease prevalence in SLE in the absence of LDL-C elevation.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Tuula Saukkonen ◽  
Shivaprakash Jagalur Mutt ◽  
Jari Jokelainen ◽  
Anna-Maria Saukkonen ◽  
Ghulam Shere Raza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document