scholarly journals Mesenchymal stem cell expressed VEGF‐E protects pulmonary endothelial cells from cigarette smoke toxicity (1176.9)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Bo Zhai ◽  
Li Zhang ◽  
Chaoqun Huang ◽  
Rohan Varshney ◽  
Pulavendran Sivasami ◽  
...  
2021 ◽  
Vol 4 (3) ◽  
pp. 2398-2407
Author(s):  
Lei Xu ◽  
Regine Willumeit-Römer ◽  
Bérengère J. C. Luthringer-Feyerabend

RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18685-18692
Author(s):  
Hiroki Masuda ◽  
Yoshinori Arisaka ◽  
Masahiro Hakariya ◽  
Takanori Iwata ◽  
Tetsuya Yoda ◽  
...  

Molecular mobility of polyrotaxane surfaces promoted mineralization in a co-culture system of mesenchymal stem cells and endothelial cells.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Adelheid Kratzer ◽  
Jonas Salys ◽  
Benjy Gonzalez ◽  
Hong Wei Chu ◽  
Martin Zamora ◽  
...  

Background and Objectives: Cell adhesion molecule CD146 is a transmembrane glycoprotein constitutively expressed in all types of endothelial cells (EC). It exists in two forms: a membrane-anchored form (CD146) and a soluble, extracellular and cleaved form (sCD146). The plasma concentration of sCD146 is modulated in inflammatory diseases that involve endothelial alterations. We investigated the role of endothelial CD146 in cigarette smoke-induced emphysema in vivo and in pulmonary endothelial cells (EC) in vitro . Methods: Sprague Dawley rats exposed to cigarette smoke for 2 months developed significant emphysematous changes (measured by mean linear intercept). Levels of sCD146 were subsequently measured in the circulation as well as in the bronchoalveolar lavage fluid (BALf) via ELISA. In vitro studies were carried out in rat pulmonary microvascular endothelial cells using CSE. Results: CD146 is highly expressed in rat pulmonary microvascular endothelial cells (RPMVEC) and to a much lower extent, in pulmonary macrovascular endothelial cells (RPAEC). Treatment of RPMVEC with cigarette smoke extract (CSE) in vitro resulted in decreased expression of membrane-bound CD146 as well as a reduced gene expression and increased sCD146 levels in the culture medium after 12 hours. Moreover, CSE-induced downregulation of CD146 expression resulted in increased vascular permeability of RPMVEC, as measured by EVANs Blue assay and migration of CFSE-labeled rat alveolar macrophage. Immunofluorescent staining revealed that CSE treatment resulted in translocation of membrane-bound CD146 into the nucleus. Subsequent western blot analysis showed changes in ERK and AKT activation and signaling. Similar results were found upon siRNA silencing of CD146, implicating a role for CD146 in tissue inflammation and integrity. Circulating levels of sCD146 were also elevated in plasma and BALf of patients with COPD and correlated, in part, with the presence of anti-endothelial autoantibodies. Additionally, we found decreased expression of membrane-bound CD146 in lung tissues of COPD patients. Conclusions: Our data suggest that CD146 plays an important role in pulmonary vascular EC function. Moreover, levels of circulating soluble CD146 can be a predictor of vascular endothelial cell injury.


2016 ◽  
Vol 130 (23) ◽  
pp. 2181-2198 ◽  
Author(s):  
Yujia Yuan ◽  
Meimei Shi ◽  
Lan Li ◽  
Jingping Liu ◽  
Bo Chen ◽  
...  

Vasculopathy is a major complication of diabetes. Impaired mitochondrial bioenergetics and biogenesis due to oxidative stress are a critical causal factor for diabetic endothelial dysfunction. Sirt1, an NAD+-dependent enzyme, is known to play an important protective role through deacetylation of many substrates involved in oxidative phosphorylation and reactive oxygen species generation. Mesenchymal stem cell-conditioned medium (MSC-CM) has emerged as a promising cell-free therapy due to the trophic actions of mesenchymal stem cell (MSC)-secreted molecules. In the present study, we investigated the therapeutic potential of MSC-CMs in diabetic endothelial dysfunction, focusing on the Sirt1 signalling pathway and the relevance to mitochondrial function. We found that high glucose-stimulated MSC-CM attenuated several glucotoxicity-induced processes, oxidative stress and apoptosis of endothelial cells of the human umbilical vein. MSC-CM perfusion in diabetic rats ameliorated compromised aortic vasodilatation and alleviated oxidative stress in aortas. We further demonstrated that these effects were dependent on improved mitochondrial function and up-regulation of Sirt1 expression. MSC-CMs activated the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), leading to direct interaction between Akt and Sirt1, and subsequently enhanced Sirt1 expression. In addition, both MSC-CM and Sirt1 activation could increase the expression of peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), as well as increase the mRNA expression of its downstream, mitochondrial, biogenesis-related genes. This indirect regulation was mediated by activation of AMP-activated protein kinase (AMPK). Overall our findings indicated that MSC-CM had protective effects on endothelial cells, with respect to glucotoxicity, by ameliorating mitochondrial dysfunction via the PI3K/Akt/Sirt1 pathway, and Sirt1 potentiated mitochondrial biogenesis, through the Sirt1/AMPK/PGC-1α pathway.


Sign in / Sign up

Export Citation Format

Share Document