Regulation of astrocyte inflammatory responses by the Parkinson's disease‐associated gene DJ–1

2009 ◽  
Vol 23 (8) ◽  
pp. 2478-2489 ◽  
Author(s):  
Jens Waak ◽  
Stephanie S. Weber ◽  
Andrea Waldenmaier ◽  
Karin Görner ◽  
Marianna Alunni‐Fabbroni ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


2020 ◽  
Author(s):  
Yinquan Fang ◽  
Qingling Jiang ◽  
Shanshan Li ◽  
Hong Zhu ◽  
Xiao Ding ◽  
...  

Abstract Background Although β-arrestins (ARRBs) regulate diverse physiological and pathophysiological processes, their function and regulation in Parkinson’s disease (PD) remain poorly defined. Methods We measured expression of ARRB1 and ARRB2 in liposaccharide (LPS)-induced and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. ARRB1-deficient and ARRB2-deficient mouse were used to assess the impact of ARRBs on dopaminergic (DA) neuron loss and microglia activation in PD mouse models. After primary mouse DA neurons were exposed to the conditioned medium from ARRB1 knockdown or ARRB2 knockout microglia stimulated by LPS plus interferon γ (IFN-γ), the degeneration of DA neurons was quantified. Gain- and loss-of-function studies were used to study the effects of ARRBs on microglia activation in vitro. To further understand the mechanism, we measured the activation of classical inflammatory pathways and used RNA sequencing to identify the novel downstream effector of ARRBs. Result In this study, we demonstrate that expression of ARRB1 and ARRB2, particularly in microglia, is reciprocally regulated in PD mouse models. ARRB1 ablation ameliorates, whereas ARRB2 knockout aggravates, the pathological features of PD, including DA neuron loss, neuroinflammation and microglia activation in vivo, as well as microglia-mediated neuron damage and inflammation in vitro. In parallel, ARRB1 and ARRB2 produce adverse effects on the activation of inflammatory signal transducers and activators of transcription 1 (STAT1) and nuclear factor-κB (NF-κB) pathways in microglia. We also show that two ARRBs competitively interact with activated p65 in the NF-κB pathway and that nitrogen permease regulator-like 3 (Nprl3), a functionally poorly characterized protein, is a novel effector acting downstream of both ARRBs. Conclusion Collectively, these data demonstrate that two closely related ARRBs have completely opposite functions in microglia-mediated inflammatory responses, via Nprl3, and differentially affect the pathogenesis of PD, and suggest a potential therapeutic strategy.


2020 ◽  
Author(s):  
dewei he ◽  
dianfeng liu ◽  
ang zhou ◽  
xiyu gao ◽  
yufei zhang ◽  
...  

Abstract Background Parkinson's disease (PD), the second largest neurodegenerative disease seriously affects human health. Microglia, the main immune cells in the brain participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidences suggest that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. Therefore, we aim to explore the effect of CPT on microglia polarization and its underlying mechanism on neuroinflammation. Methods C57BL/6 mice (25–30 g) were injected LPS or PBS into the substantia nigra (SN). Open-Field Test and Immunohistochemistry were performed to test the dyskinesia of mice and the loss of neurons in the substantia nigra (SN). Microglia cell line BV-2, the neuroblastoma SH-SY5Y and dopaminergic neuron MN9D cell were cultured. Cytotoxicity assay, reverse transcription quantitative real-time polymerase chain reaction (RT-PCR), Western blot, ELISA and Immunofluorescence staining were performed. All results were presented with mean ± SD. Results In vivo, CPT improved dyskinesia of mice, reduced the loss of neurons in the substantia nigra (SN) and inhibited neuro-inflammatory responses in LPS-injected mice. In vitro, CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1-NF-κB signal axis. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from neurotoxicity of mediated by microglia activation. Conclusion CPT regulates the microglia polarization phenotype via the AKT/Nrf2/HO-1-NF-κB signal axis, inhibits neuro-inflammatory responses and exerts neuroprotective effects in vivo and in vitro.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
C. Pellegrini ◽  
V. D’Antongiovanni ◽  
F. Miraglia ◽  
L. Rota ◽  
L. Benvenuti ◽  
...  

AbstractsBowel inflammation, impaired intestinal epithelial barrier (IEB), and gut dysbiosis could represent early events in Parkinson’s disease (PD). This study examined, in a descriptive manner, the correlation among enteric α-synuclein, bowel inflammation, impairments of IEB and alterations of enteric bacteria in a transgenic (Tg) model of PD before brain pathology. Human A53T α-synuclein Tg mice were sacrificed at 3, 6, and 9 months of age to evaluate concomitance of enteric inflammation, IEB impairments, and enteric bacterial metabolite alterations during the early phases of α-synucleinopathy. The molecular mechanisms underlying the interplay between α-synuclein, activation of immune/inflammatory responses and IEB alterations were investigated with in vitro experiments in cell cultures. Tg mice displayed an increase in colonic levels of IL-1β, TNF, caspase-1 activity and enteric glia activation since 3 months of age. Colonic TLR-2 and zonulin-1 expression were altered in Tg mice as compared with controls. Lipopolysaccharide levels were increased in Tg animals at 3 months, while fecal butyrate and propionate levels were decreased. Co-treatment with lipopolysaccharide and α-synuclein promoted IL-1β release in the supernatant of THP-1 cells. When applied to Caco-2 cells, the THP-1-derived supernatant decreased zonulin-1 and occludin expression. Such an effect was abrogated when THP-1 cells were incubated with YVAD (caspase-1 inhibitor) or when Caco-2 were incubated with anakinra, while butyrate incubation did not prevent such decrease. Taken together, early enteric α-synuclein accumulation contributes to compromise IEB through the direct activation of canonical caspase-1-dependent inflammasome signaling. These changes could contribute both to bowel symptoms as well as central pathology.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5371
Author(s):  
Ying Guo ◽  
Zhizhong Ma ◽  
Xianling Ning ◽  
Ying Chen ◽  
Chao Tian ◽  
...  

A novel class of styryl sulfones were designed and synthesized as CAPE derivatives by our work team, which showed a multi-target neuroprotective effect, including antioxidative and anti-neuroinflammatory properties. However, the underlying mechanisms remain unclear. In the present study, the anti-Parkinson’s disease (PD) activity of 10 novel styryl sulfone compounds was screened by the cell viability test and the NO inhibition test in vitro. It was found that 4d exhibited the highest activity against PD among them. In a MPTP-induced mouse model of PD, the biological activity of 4d was validated through suppressing dopamine neurotoxicity, microglial activation, and astrocytes activation. With compound 4d, we conducted the mechanistic studies about anti-inflammatory responses through inhibition of p38 phosphorylation to protect dopaminergic neurons, and antioxidant effects through promoting nuclear factor erythroid 2-related factor 2 (Nrf2). The results revealed that 4d could significantly inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+)-induced p38 mitogen-activated protein kinase (MAPK) activation in both in vitro and in vivo PD models, thus inhibiting the NF-κB-mediated neuroinflammation-related apoptosis pathway. Simultaneously, it could promote Nrf2 nuclear transfer, and upregulate the expression of antioxidant phase II detoxification enzymes HO-1 and GCLC, and then reduce oxidative damage.


2020 ◽  
Vol 14 ◽  
Author(s):  
Kathryn Sánchez ◽  
Kathleen Maguire-Zeiss

α-Synuclein is a 140-amino acid protein that readily misfolds and is associated with the Lewy body pathology found in sporadic and genetic forms of Parkinson's disease. We and others have shown that wild-type α-synuclein is a damage-associated molecular pattern that directly elicits a proinflammatory response in microglia through toll-like receptor activation. Here we investigated the direct effect of oligomeric mutant α-synuclein (A53T) on microglia morphology and activation. We found that misfolded A53T increased quantitative measures of amoeboid cell morphology, NFκB nuclear translocation and the expression of prototypical proinflammatory molecules. We also demonstrated that A53T increased expression of MMP13, a matrix metalloproteinase that remodels the extracellular matrix. To better understand the role of MMP13 in synucleinopathies, we further characterized the role of MMP13 in microglial signaling. We showed exposure of microglia to MMP13 induced a change in morphology and promoted the release of TNFα and MMP9. Notably, IL1β was not released indicating that the pathway involved in MMP13 activation of microglia may be different than the A53T pathway. Lastly, MMP13 increased the expression of CD68 suggesting that the lysosomal pathway might be altered by this MMP. Taken together this study shows that mutant α-synuclein directly induces a proinflammatory phenotype in microglia, which includes the expression of MMP13. In turn, MMP13 directly alters microglia supporting the need for multi-target therapies to treat Parkinson's disease patients.


2012 ◽  
Vol 40 (5) ◽  
pp. 1042-1046 ◽  
Author(s):  
Youren Tong ◽  
Jie Shen

Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of PD (Parkinson's disease). To investigate how mutations in LRRK2 cause PD, we generated LRRK2 mutant mice either lacking its expression or expressing the R1441C mutant form. Homozygous R1441C knockin mice exhibit no dopaminergic neurodegeneration or alterations in steady-state levels of striatal dopamine, but they show impaired dopamine neurotransmission, as was evident from reductions in amphetamine-induced locomotor activity and stimulated catecholamine release in cultured chromaffin cells as well as impaired dopamine D2 receptor-mediated functions. Whereas LRRK2−/− brains are normal, LRRK2−/− kidneys at 20 months of age develop striking accumulation and aggregation of α-synuclein and ubiquitinated proteins, impairment of the autophagy–lysosomal pathway, and increases in apoptotic cell death, inflammatory responses and oxidative damage. Our further analysis of LRRK2−/− kidneys at multiple ages revealed unique age-dependent biphasic alterations of the autophagic activity, which is unchanged at 1 month of age, enhanced at 7 months, but reduced at 20 months. Levels of α-synuclein and protein carbonyls, a general oxidative damage marker, are also decreased in LRRK2−/− kidneys at 7 months of age. Interestingly, this biphasic alteration is associated with increased levels of lysosomal proteins and proteases as well as progressive accumulation of autolysosomes and lipofuscin granules. We conclude that pathogenic mutations in LRRK2 impair the nigrostriatal dopaminergic pathway, and LRRK2 plays an essential role in the dynamic regulation of autophagy function in vivo.


Sign in / Sign up

Export Citation Format

Share Document