The Actions of Sevoflurane and Desflurane on the γ-Aminobutyric Acid Receptor Type A

2003 ◽  
Vol 99 (3) ◽  
pp. 678-684 ◽  
Author(s):  
Koichi Nishikawa ◽  
Neil L. Harrison

Background Previous studies have shown that specific amino acid residues in the putative second transmembrane segment (TM2) of the gamma-aminobutyric acid receptor type A (GABAA) receptor play a critical role in the enhancement of GABAA receptor function by halothane, enflurane, and isoflurane. However, very little is known about the actions of sevoflurane and desflurane on recombinant GABAA receptors. The aim of this study was to examine the effects of sevoflurane and desflurane on potentiation of GABA-induced responses in the wild-type GABAA receptor and in receptors mutated in TM2 of the alpha1, alpha 2, or beta 2 subunits. Methods GABAA receptor alpha 1 or alpha 2, beta 2 or beta 3, and gamma 2s subunit cDNAs were expressed for pharmacologic study by transfection of human embryonic kidney 293 cells and assayed using the whole cell voltage clamp technique. Concentration-response curves and EC50 values for agonist were determined in the wild-type alpha 1 beta 2 gamma 2s and alpha 2 beta 3 gamma 2s receptors, and in receptors harboring mutations in TM2, such as alpha1(S270W)beta 2 gamma 2s, alpha 1 beta 2(N265W)gamma 2s, and alpha2(S270I)beta 3 gamma 2s. The actions of clinically relevant concentration of volatile anesthetics (isoflurane, sevoflurane, and desflurane) on GABA activated Cl- currents were compared in the wild-type and mutant GABAA receptors. Results Both sevoflurane and desflurane potentiated submaximal GABA currents in the wild-type GABAA alpha 1 beta 2 gamma 2s receptor and alpha 2 beta 3 gamma 2s receptor. Substitution of Ser270 in TM2 of the alpha subunit by a larger amino acid, tryptophan (W) or isoleucine (I), as in alpha1(S270W)beta 2 gamma 2s and alpha 2(S270I)beta 3 gamma 2s, completely abolished the potentiation of GABA-induced currents by these anesthetic agents. In contrast, mutation of Asn265 in TM2 of the beta subunit to tryptophan (W) did not prevent potentiation of GABA-induced responses. The actions of sevoflurane and desflurane in the wild-type receptor and in mutated receptors were qualitatively and quantitatively similar to those observed for isoflurane. Conclusions Positions Ser270 of the GABAA alpha1 and alpha2 subunits, but not Asn265 in the TM2 of the beta2 subunit, are critical for regulation of the GABAA receptor by sevoflurane and desflurane, as well as isoflurane, consistent with the idea that these three volatile anesthetics share a common site of actions on the alpha subunit of the GABAA receptor.

2013 ◽  
Vol 118 (5) ◽  
pp. 1065-1075 ◽  
Author(s):  
Yun-Yan Xiang ◽  
Xuanmao Chen ◽  
Jingxin Li ◽  
Shuanglian Wang ◽  
Gil Faclier ◽  
...  

Abstract Background: Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. Methods: The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. Results: ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µm. Isoflurane (0.1–250 µm) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µm) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. Conclusions: GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.


2004 ◽  
Vol 100 (6) ◽  
pp. 1438-1445 ◽  
Author(s):  
Jennifer Cirone ◽  
Thomas W. Rosahl ◽  
David S. Reynolds ◽  
Richard J. Newman ◽  
Gillian F. O'Meara ◽  
...  

Background The authors have previously described that the gamma-aminobutyric acid type A (GABAA) receptor beta 2N265S mutation results in a knock-in mouse with reduced sensitivity to etomidate. After recovery from etomidate anesthesia, these mice have improved motor performance and less slow wave sleep. Because most clinically used anesthetics produce hypothermia, the effect of this mutation on core body temperature was investigated. Methods The effect of etomidate and propofol on core body temperature were measured using radiotelemetry in freely moving GABAA receptor beta 2N265S mutant mice and wild-type controls. Results beta 2N265S mutant mice have a reduced hypothermic response to anesthetic doses of etomidate compared with wild-type controls and after a transient loss of righting reflex regain normothermia more rapidly compared with wild-type controls. Subanesthetic doses of etomidate produce hypothermia, which was not observed in the mutant mice. Vehicle administration resulted in a stress-induced hyperthermic response in both genotypes. Propofol produced a hypothermic response that was similar in both genotypes. Conclusions The GABAA receptor beta 2 subunit mediates a significant proportion of the hypothermic effects of etomidate. As the beta 2 subunit mediates postrecovery ataxia and sedation, anesthetic agents that do not have in vivo potency at beta 2 subunit-containing receptors offer the potential for surgical anesthesia with improved recovery characteristics.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 267-286 ◽  
Author(s):  
J D Fackenthal ◽  
J A Hutchens ◽  
F R Turner ◽  
E C Raff

Abstract We have determined the lesions in a number of mutant alleles of beta Tub85D, the gene that encodes the testis-specific beta 2-tubulin isoform in Drosophila melanogaster. Mutations responsible for different classes of functional phenotypes are distributed throughout the beta 2-tubulin molecule. There is a telling correlation between the degree of phylogenetic conservation of the altered residues and the number of different microtubule categories disrupted by the lesions. The majority of lesions occur at positions that are evolutionarily highly conserved in all beta-tubulins; these lesions disrupt general functions common to multiple classes of microtubules. However, a single allele B2t6 contains an amino acid substitution within an internal cluster of variable amino acids that has been identified as an isotype-defining domain in vertebrate beta-tubulins. Correspondingly, B2t6 disrupts only a subset of microtubule functions, resulting in misspecification of the morphology of the doublet microtubules of the sperm tail axoneme. We previously demonstrated that beta 3, a developmentally regulated Drosophila beta-tubulin isoform, confers the same restricted morphological phenotype in a dominant way when it is coexpressed in the testis with wild-type beta 2-tubulin. We show here by complementation analysis that beta 3 and the B2t6 product disrupt a common aspect of microtubule assembly. We therefore conclude that the amino acid sequence of the beta 2-tubulin internal variable region is required for generation of correct axoneme morphology but not for general microtubule functions. As we have previously reported, the beta 2-tubulin carboxy terminal isotype-defining domain is required for suprastructural organization of the axoneme. We demonstrate here that the beta 2 variant lacking the carboxy terminus and the B2t6 variant complement each other for mild-to-moderate meiotic defects but do not complement for proper axonemal morphology. Our results are consistent with the hypothesis drawn from comparisons of vertebrate beta-tubulins that the two isotype-defining domains interact in a three-dimensional structure in wild-type beta-tubulins. We propose that the integrity of this structure in the Drosophila testis beta 2-tubulin isoform is required for proper axoneme assembly but not necessarily for general microtubule functions. On the basis of our observations we present a model for regulation of axoneme microtubule morphology as a function of tubulin assembly kinetics.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sheue-Jane Hou ◽  
Shih-Jen Tsai ◽  
Po-Hsiu Kuo ◽  
Wan-Yu Lin ◽  
Yu-Li Liu ◽  
...  

Abstract Background Gamma-aminobutyric acid type A (GABAA) receptors mainly mediate the effects of gamma-aminobutyric acid, which is the primary inhibitory neurotransmitter in the central nervous system. Abundant evidence suggests that GABAA receptors play a key role in sleep-regulating processes. No genetic association study has explored the relationships between GABAA receptor genes and sleep duration, sleep quality, and sleep timing in humans. Methods We determined the association between single-nucleotide polymorphisms (SNPs) in the GABAA receptor genes GABRA1, GABRA2, GABRB3, GABRA5, and GABRG3 and sleep duration, sleep quality, and sleep timing in the Taiwan Biobank with a sample of 10,127 Taiwanese subjects. There were 10,142 subjects in the original study cohort. We excluded 15 subjects with a medication history of sedative-hypnotics. Results Our data revealed an association of the GABRB3-GABRA5-GABRG3 gene cluster with sleep duration, which has not been previously identified: rs79333046 (beta = − 0.07; P = 1.21 × 10–3) in GABRB3, rs189790076 (beta = 0.92; P = 1.04 × 10–3) in GABRA5, and rs147619342 (beta = − 0.72; P = 3.97 × 10–3) in GABRG3. The association between rs189790076 in GABRA5 and sleep duration remained significant after Bonferroni correction. A variant (rs12438141) in GABRB3 was also found to act as a potential expression quantitative trait locus. Additionally, we discovered interactions between variants in the GABRB3-GABRA5-GABRG3 gene cluster and lifestyle factors, such as tea and coffee consumption, smoking, and physical activity, that influenced sleep duration, although some interactions became nonsignificant after Bonferroni correction. We also found interactions among GABRB3, GABRA5, and GABRG3 that affected sleep duration. Furthermore, we identified an association of rs7165524 (beta = − 0.06; P = 2.20 × 10–3) in GABRA5 with sleep quality and an association of rs79465949 (beta = − 0.12; P = 3.95 × 10–3) in GABRB3 with sleep timing, although these associations became nonsignificant after Bonferroni correction. However, we detected no evidence of an association of individual SNPs in GABRA1 and GABRA2. Conclusions Our results indicate that rs189790076 in GABRA5 and gene–gene interactions among GABRB3, GABRA5, and GABRG3 may contribute to sleep duration in the Taiwanese population.


2005 ◽  
Vol 102 (4) ◽  
pp. 783-792 ◽  
Author(s):  
Dirk Rüsch ◽  
Stuart A. Forman

Background Classic benzodiazepine agonists induce their clinical effects by binding to a site on gamma-aminobutyric acid type A (GABAA) receptors and enhancing receptor activity. There are conflicting data regarding whether the benzodiazepine site is allosterically coupled to gamma-aminobutyric acid binding versus the channel open-close (gating) equilibrium. The authors tested the hypothesis that benzodiazepine site ligands modulate alpha1beta2gamma2L GABAA receptor gating both in the absence of orthosteric agonists and when the orthosteric sites are occupied. Methods GABAA receptors were recombinantly expressed in Xenopus oocytes and studied using two-microelectrode voltage clamp electrophysiology. To test gating effects in the absence of orthosteric agonist, the authors used spontaneously active GABAA receptors containing a leucine-to-threonine mutation at residue 264 on the alpha1 subunit. To examine effects on gating when orthosteric sites were fully occupied, they activated wild-type receptors with high concentrations of a partial agonist, piperidine-4-sulfonic acid. Results In the absence of orthosteric agonists, the channel activity of alpha1L264Tbeta2gamma2L receptors was increased by diazepam and midazolam and reduced by the inverse benzodiazepine agonist FG7142. Flumazenil displayed very weak agonism and blocked midazolam from further activating mutant channels. In wild-type receptors activated with saturating concentrations of piperidine-4-sulfonic acid, midazolam increased maximal efficacy. Conclusions Independent of orthosteric site occupancy, classic benzodiazepines modulate the gating equilibrium in alpha1beta2gamma2L GABAA receptors and are therefore allosteric coagonists. A Monod-Wyman-Changeux coagonist gating model quantitatively predicts these effects, suggesting that benzodiazepines minimally alter orthosteric ligand binding.


1995 ◽  
Vol 73 (5) ◽  
pp. 2099-2106 ◽  
Author(s):  
R. A. Wang ◽  
G. Cheng ◽  
M. Kolaj ◽  
M. Randic

1. Here we report that in acutely isolated rat spinal dorsal horn neurons, the gamma-aminobutyric acid-A (GABAA) receptor can be regulated by calcium/calmodulin-dependent protein kinase II (CaM-KII). Intracellularly applied, the alpha-subunit of CaM-KII enhanced GABAA-receptor-activated current recorded with the use of the whole cell patch-clamp technique. This effect was associated with reduced desensitization of GABA responses. 2. GABA-induced currents are also potentiated by calyculin A, an inhibitor of protein phosphatases 1 and 2A. 3. Conventional intracellular recordings were made from hippocampal CA1 neurons in slices to determine the effect of intracellular application of CaM-KII on inhibitory synaptic potentials evoked by electrical stimulation of the stratum oriens/alveus. The inhibitory synaptic potential was enhanced by CaM-KII; this mechanism may contribute to long-term enhancement of inhibitory synaptic transmission and may also play a role in other forms of plasticity in the mammalian brain.


1987 ◽  
Vol 7 (6) ◽  
pp. 2231-2242 ◽  
Author(s):  
J E Rudolph ◽  
M Kimble ◽  
H D Hoyle ◽  
M A Subler ◽  
E C Raff

The genomic DNA sequence and deduced amino acid sequence are presented for three Drosophila melanogaster beta-tubulins: a developmentally regulated isoform beta 3-tubulin, the wild-type testis-specific isoform beta 2-tubulin, and an ethyl methanesulfonate-induced assembly-defective mutation of the testis isoform, B2t8. The testis-specific beta 2-tubulin is highly homologous to the major vertebrate beta-tubulins, but beta 3-tubulin is considerably diverged. Comparison of the amino acid sequences of the two Drosophila isoforms to those of other beta-tubulins indicates that these two proteins are representative of an ancient sequence divergence event which at least preceded the split between lines leading to vertebrates and invertebrates. The intron/exon structures of the genes for beta 2- and beta 3-tubulin are not the same. The structure of the gene for the variant beta 3-tubulin isoform, but not that of the testis-specific beta 2-tubulin gene, is similar to that of vertebrate beta-tubulins. The mutation B2t8 in the gene for the testis-specific beta 2-tubulin defines a single amino acid residue required for normal assembly function of beta-tubulin. The sequence of the B2t8 gene is identical to that of the wild-type gene except for a single nucleotide change resulting in the substitution of lysine for glutamic acid at residue 288. This position falls at the junction between two major structural domains of the beta-tubulin molecule. Although this hinge region is relatively variable in sequence among different beta-tubulins, the residue corresponding to glu 288 of Drosophila beta 2-tubulin is highly conserved as an acidic amino acid not only in all other beta-tubulins but in alpha-tubulins as well.


2000 ◽  
Vol 182 (4) ◽  
pp. 919-927 ◽  
Author(s):  
Anjali Seth ◽  
Nancy D. Connell

ABSTRACT Genes encoding l-arginine biosynthetic and transport proteins have been shown in a number of pathogenic organisms to be important for metabolism within the host. In this study we describe the cloning of a gene (Rv0522) encoding an amino acid transporter fromMycobacterium bovis BCG and the effects of its deletion onl-arginine transport and metabolism. The Rv0522 gene of BCG was cloned from a cosmid library by using primers homologous to therocE gene of Bacillus subtilis, a putative arginine transporter. A deletion mutant strain was constructed by homologous recombination with the Rv0522 gene interrupted by a selectable marker. The mutant strain was complemented with the wild-type gene in single copy. Transport analysis of these strains was conducted using 14C-labeled substrates. Greatly reduced uptake of l-arginine and γ-aminobutyric acid (GABA) but not of lysine, ornithine, proline, or alanine was observed in the mutant strain compared to the wild type, grown in Middlebrook 7H9 medium. However, when the strains were starved for 24 h or incubated in a minimal salts medium containing 20 mM arginine (in which even the parent strain does not grow),l-[14C]arginine uptake by the mutant but not the wild-type strain increased strongly. Exogenousl-arginine but not GABA, lysine, ornithine, or alanine was shown to be toxic at concentrations of 20 mM and above to wild-type cells growing in optimal carbon and nitrogen sources such as glycerol and ammonium. l-Arginine supplied in the form of dipeptides showed no toxicity at concentrations as high as 30 mM. Finally, the permease mutant strain showed no defect in survival in unactivated cultured murine macrophages compared with wild-type BCG.


2001 ◽  
Vol 67 (7) ◽  
pp. 3064-3070 ◽  
Author(s):  
Hiroaki Motoyama ◽  
Hiroshi Yano ◽  
Yoko Terasaki ◽  
Hideharu Anazawa

ABSTRACT The dapA gene, encoding dihydrodipicolinate synthase (DDPS) partially desensitized to inhibition by l-lysine, was cloned from an l-threonine- andl-lysine-coproducing mutant of the obligate methylotrophMethylobacillus glycogenes DHL122 by complementation of the nutritional requirement of an Escherichia coli dapAmutant. Introduction of the dapA gene into DHL122 and AL119, which is the parent of DHL122 and an l-threonine producing mutant, elevated the specific activity of DDPS 20-fold andl-lysine production 2- to 3-fold with concomitant reduction of l-threonine in test tube cultures. AL119 containing thedapA gene produced 8 g of l-lysine per liter in a 5-liter jar fermentor from methanol as a substrate. Analysis of the nucleotide sequence of the dapA gene shows that it encodes a peptide with an M r of 30,664 and that the encoded amino acid sequence is extensively homologous to those of other organisms. In order to study the mutation that occurred in DHL122, the dapA genes of the wild type and AL119 were cloned and sequenced. Comparison of the nucleotide sequences of the dapA genes revealed that the amino acid at residue 88 was F in DHL122 whereas it was L in the wild type and AL119, suggesting that this amino acid alteration that occurred in DHL122 caused the partial desensitization of DDPS to the inhibition byl-lysine. The similarity in the amino acid sequences of DDPS in M. glycogenes and other organisms suggests that the mutation of the dapA gene in DHL122 is located in the region concerned with interaction of the allosteric effector,l-lysine.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593 ◽  
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


Sign in / Sign up

Export Citation Format

Share Document