Activation of α2B-Adrenoceptors Mediates the Cardiovascular Effects of Etomidate

2003 ◽  
Vol 99 (4) ◽  
pp. 889-895 ◽  
Author(s):  
Andrea Paris ◽  
Melanie Philipp ◽  
Peter H. Tonner ◽  
Markus Steinfath ◽  
Martin Lohse ◽  
...  

Background The intravenous anesthetic etomidate exhibits structural similarities to specific alpha2-adrenoceptor agonists of the type such as dexmedetomidine. The current study was performed to elucidate the possible interaction of etomidate with alpha2-adrenoceptors in mice lacking individual alpha2-adrenoceptor subtypes (alpha2-KO). Methods Sedative and cardiovascular responses to etomidate and the alpha2-agonist, dexmedetomidine, were determined in mice deficient in alpha2-receptor subtypes. Inhibition of binding of the alpha2-receptor antagonist [3H]RX821002 to recombinant alpha2-receptors by etomidate was tested in human embryonic kidney (HEK293) cells in vitro. Results In vivo, loss and recovery of the righting reflex required similar times after intraperitoneal injection of etomidate in wild-type and in alpha2A-receptor-deficient mice, indicating that the hypnotic effect of etomidate in mice does not require the alpha2A-receptor subtype. Intravenous injection of etomidate resulted in a transient increase (duration 2.4 +/- 0.2 min) in arterial blood pressure in wild-type mice (17 +/- 3 mmHg). Etomidate did not affect blood pressure in alpha2B-KO or alpha2AB-KO mice. In membranes from HEK293 cells transfected with alpha2-receptors, etomidate inhibited binding of the alpha2-antagonist, [3H]RX821002, with higher potency from alpha2B- and alpha2C-receptors than from alpha2A-receptors (Ki alpha2A 208 microm, alpha2B 26 microm, alpha2C 56 microm). In alpha2B-receptor-expressing HEK293 cells, etomidate rapidly increased phosphorylation of the extracellular signal-related kinases ERK1/2. Conclusions These results indicate that etomidate acts as an agonist at alpha2-adrenoceptors, which appears in vivo primarily as an alpha2B-receptor-mediated increase in blood pressure. This effect of etomidate may contribute to the cardiovascular stability of patients after induction of anesthesia with etomidate.

1997 ◽  
Vol 272 (4) ◽  
pp. R1283-R1289 ◽  
Author(s):  
S. L. Bealer

The roles of alpha-adrenoceptors in the anteroventral third ventricle (AV3V) and diagonal band of Broca (DBB) in cardiovascular responses to peripheral hypertonicity were investigated in conscious rats. Normal artificial cerebrospinal fluid (aCSF) or aCSF containing phentolamine (alpha1- and alpha2-antagonist), yohimbine (alpha2-antagonist), or prazosin (alpha1-antagonist) was perfused through microdialysis probes in the DBB, AV3V, or lateral ventricle during a 30-min infusion of isotonic (0.17 M; 0.1 or 1.7 ml x kg(-1) x min(-1) i.v.) or hypertonic (2.5 M; 0.1 ml x kg(-1) x min(-1) i.v.) NaCl. Hypertonic infusion increased blood pressure [mean arterial blood pressure (MAP); 17 +/- 2 mmHg] and decreased heart rate (HR; 36 +/- 6 beats/min). Both responses were abolished by AV3V administration of phentolamine or yohimbine, whereas prazosin selectively prevented the bradycardia. Phentolamine in the DBB or lateral ventricle did not alter either response. Stimulation of AV3V alpha1-adrenoceptors (phenylephrine) decreased HR and MAP, whereas alpha2-adrenoceptor stimulation (clonidine) produced bradycardia but increased MAP. Data suggest that alpha-adrenoceptors in the AV3V, but not the DBB, regulate cardiovascular responses to hyperosmolality.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


2020 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Melpomeni Fani ◽  
Viktoria Weingaertner ◽  
Petra Kolenc Peitl ◽  
Rosalba Mansi ◽  
Raghuvir H. Gaonkar ◽  
...  

Recently, radiolabelled antagonists targeting somatostatin receptors subtype 2 (SST2) in neuroendocrine neoplasms demonstrated certain superior properties over agonists. Within the ERA-PerMED project “TECANT” two 99mTc-Tetramine (N4)-derivatized SST2 antagonists (TECANT-1 and TECANT-2) were studied for the selection of the best candidate for clinical translation. Receptor-affinity, internalization and dissociation studies were performed in human embryonic kidney-293 (HEK293) cells transfected with the human SST2 (HEK-SST2). Log D, protein binding and stability in human serum were assessed. Biodistribution and SPECT/CT studies were carried out in nude mice bearing HEK-SST2 xenografts, together with dosimetric estimations from mouse-to-man. [99mTc]Tc-TECANT-1 showed higher hydrophilicity and lower protein binding than [99mTc]-TECANT-2, while stability was comparable. Both radiotracers revealed similar binding affinity, while [99mTc]Tc-TECANT-1 had higher cellular uptake (>50%, at 2 h/37 °C) and lower dissociation rate (<30%, at 2 h/37 °C). In vivo, [99mTc]Tc-TECANT-1 showed lower blood values, kidney and muscles uptake, whereas tumour uptake was comparable to [99mTc]Tc-TECANT-2. SPECT/CT imaging confirmed the biodistribution results, providing the best tumour-to-background image contrast for [99mTc]Tc-TECANT-1 at 4 h post-injection (p.i.). The estimated radiation dose amounted to approximately 6 µSv/MBq for both radiotracers. This preclinical study provided the basis of selection of [99mTc]Tc-TECANT-1 for clinical translation of the first 99mTc-based SST2 antagonist.


2015 ◽  
Vol 309 (10) ◽  
pp. R1273-R1284 ◽  
Author(s):  
Jennifer Magnusson ◽  
Kevin J. Cummings

The role of serotonin (5-HT) neurons in cardiovascular responses to acute intermittent hypoxia (AIH) has not been studied in the neonatal period. We hypothesized that a partial loss of 5-HT neurons would reduce arterial blood pressure (BP) at rest, increase the fall in BP during hypoxia, and reduce the long-term facilitation of breathing (vLTF) and BP following AIH. We exposed 2-wk-old, 5,7-dihydroxytryptamine-treated and controls to AIH (10% O2; n = 13 control, 14 treated), acute intermittent hypercapnia (5% CO2; n = 12 and 11), or acute intermittent hypercapnic hypoxia (AIHH; 10% O2, 5% CO2; n = 15 and 17). We gave five 5-min challenges of AIH and acute intermittent hypercapnia, and twenty ∼20-s challenges of AIHH to mimic sleep apnea. Systolic BP (sBP), diastolic BP, mean arterial pressure, heart rate (HR), ventilation (V̇e), and metabolic rate (V̇o2) were continuously monitored. 5,7-Dihydroxytryptamine induced an ∼35% loss of 5-HT neurons from the medullary raphe. Compared with controls, pups deficient in 5-HT neurons had reduced resting sBP (∼6 mmHg), mean arterial pressure (∼5 mmHg), and HR (56 beats/min), and experienced a reduced drop in BP during hypoxia. AIHH induced vLTF in both groups, reflected in increased V̇e and V̇e/V̇o2, and decreased arterial Pco2. The sBP of pups deficient in 5-HT neurons, but not controls, was increased 1 h following AIHH. Our data suggest that a relatively small loss of 5-HT neurons compromises resting BP and HR, but has no influence on ventilatory plasticity induced by AIHH. AIHH may be useful for reversing cardiorespiratory defects related to partial 5-HT system dysfunction.


2008 ◽  
Vol 295 (4) ◽  
pp. F1230-F1238 ◽  
Author(s):  
Soo Mi Kim ◽  
Christoph Eisner ◽  
Robert Faulhaber-Walter ◽  
Diane Mizel ◽  
Susan M. Wall ◽  
...  

NKCC1 is a widely expressed isoform of the Na-2Cl-K cotransporter that mediates several direct and indirect vascular effects and regulates expression and release of renin. In this study, we used NKCC1-deficient (NKCC1−/−) and wild-type (WT) mice to assess day/night differences of blood pressure (BP), locomotor activity, and renin release and to study the effects of high (8%) or low (0.03%) dietary NaCl intake on BP, activity, and the renin/aldosterone system. On a standard diet, 24-h mean arterial blood pressure (MAP) and heart rate determined by radiotelemetry, and their day/night differences, were not different in NKCC1−/− and WT mice. Spontaneous and wheel-running activities in the active night phase were lower in NKCC1−/− than WT mice. In NKCC1−/− mice on a high-NaCl diet, MAP increased by 10 mmHg in the night without changes in heart rate. In contrast, there was no salt-dependent blood pressure change in WT mice. MAP reductions by hydralazine (1 mg/kg) or isoproterenol (10 μg/mouse) were significantly greater in NKCC1−/− than WT mice. Plasma renin (PRC; ng ANG I·ml−1·h−1) and aldosterone (aldo; pg/ml) concentrations were higher in NKCC1−/− than WT mice (PRC: 3,745 ± 377 vs. 1,245 ± 364; aldo: 763 ± 136 vs. 327 ± 98). Hyperreninism and hyperaldosteronism were found in NKCC1−/− mice during both day and night. High Na suppressed PRC and aldosterone in both NKCC1−/− and WT mice, whereas a low-Na diet increased PRC and aldosterone in WT but not NKCC1−/− mice. We conclude that 24-h MAP and MAP circadian rhythms do not differ between NKCC1−/− and WT mice on a standard diet, probably reflecting a balance between anti- and prohypertensive factors, but that blood pressure of NKCC1−/− mice is more sensitive to increases and decreases of Na intake.


1993 ◽  
Vol 90 (23) ◽  
pp. 11287-11291 ◽  
Author(s):  
T Bartfai ◽  
U Langel ◽  
K Bedecs ◽  
S Andell ◽  
T Land ◽  
...  

The galanin-receptor ligand M40 [galanin-(1-12)-Pro3-(Ala-Leu)2-Ala amide] binds with high affinity to [mono[125I]iodo-Tyr26]galanin-binding sites in hippocampal, hypothalamic, and spinal cord membranes and in membranes from Rin m5F rat insulinoma cells (IC50 = 3-15 nM). Receptor autoradiographic studies show that M40 (1 microM) displaces [mono[125I]iodo-Tyr26]galanin from binding sites in the hippocampus, hypothalamus, and spinal cord. In the brain, M40 acts as a potent galanin-receptor antagonist: M40, in doses comparable to that of galanin, antagonizes the stimulatory effects of galanin on feeding, and it blocks the galaninergic inhibition of the scopolamine-induced acetylcholine release in the ventral hippocampus in vivo. In contrast, M40 completely fails to antagonize both the galanin-mediated inhibition of the glucose-induced insulin release in isolated mouse pancreatic islets and the inhibitory effects of galanin on the forskolin-stimulated accumulation of 3',5'-cAMP in Rin m5F cells; instead M40 is a weak agonist at the galanin receptors in these two systems. M40 acts as a weak antagonist of galanin in the spinal flexor reflex model. These results suggest that at least two subtypes of the galanin receptor may exist. Hypothalamic and hippocampal galanin receptors represent a putative central galanin-receptor subtype (GL-1-receptor) that is blocked by M40. The pancreatic galanin receptor may represent another subtype (GL-2-receptor) that recognizes M40, but as a weak agonist. The galanin receptors in the spinal cord occupy an intermediate position between these two putative subtypes.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Mariam Meddeb ◽  
Jeanine Ursitti ◽  
John Reho ◽  
Steven A Fisher

Myosin Phosphatase (MP) is the primary effector of vascular smooth muscle (VSM) relaxation and a key end target of signaling pathways that regulate vessel tone. Regulated splicing of alternative Exon24 (E24) of Myosin Phosphatase Regulatory/ Targeting subunit (MYPT1) sets vasodilator sensitivity. Skipping E24 codes for a Mypt1 isoform that contains a C-terminal leucine zipper (LZ) motif required for cGK1α binding and NO/cGMP activation of MP resulting in vasodilation. Inclusion of 31 nt E24 shifts the reading frame coding for a Mypt1 isoform with a distinct C-terminus (LZ-) that is unresponsive to NO/cGMP. We are using two editing approaches to test the function of Mypt1 E24 splice variants in the control of BP in vivo. First, LoxP sites were inserted in introns flanking E24, crossed with smMHCCre ER , and treated with Tamoxifen to achieve smooth muscle-specific cKO of E24 (SMcKO E24), thereby converting Mypt1 to the LZ+ isoform. E24 cKO mice had mean BP that was 15 + 3 mmHg lower than control (n=3-5; p<0.05). Mesenteric arteries from these mice were significantly more sensitive to DEA/NO mediated relaxation (EC 50 : 2.1+0.5 nM vs 18.2+5.6 μM; n=5-6, p<0.05). We now are developing CRISPR/CAS9 editing of Mypt1 for translation into humans with hypertension. Guide(g)RNAs targeting E24 were designed using Benchling.com and selected for further study based on predicted efficacy, specificity (>10%,>60%) and cross-species conservation. Plasmids were generated by sub-cloning of oligonucleotides into the parent pX601 plasmid for the purpose of co-expression of gRNA and saCas9. These plasmids were transfected into HEK293 cells singly and in combinations and Mypt1 gene editing assayed by PCR, Surveyor nuclease assays and sequencing of genomic DNA. Single gRNAs yielded deletions of 1-3 nt. Combinations yielded deletions of 104-334 nt that removed >80% of E24 with an efficiency of editing that varied from 10% (gRNAs 6+9 and 5+9) to 40% (gRNAs 6+11 and 5+11). We have now generated AAVgE24 and are testing their efficiency of editing of VSM in vivo. These studies support that AAV mediated CRISPR/Cas9 editing of Mypt1 E24 could be a novel strategy for vasodilator sensitization and effective lowering of blood pressure in humans.


2016 ◽  
Vol 310 (7) ◽  
pp. H861-H872 ◽  
Author(s):  
Yujia Wang ◽  
Zenghui Wu ◽  
Eric Thorin ◽  
Johanne Tremblay ◽  
Julie L. Lavoie ◽  
...  

EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions, although their function in blood pressure (BP) control has not been studied in detail. In the present study, we report that Efnb3 gene knockout (KO) led to increased BP in female but not male mice. Vascular smooth muscle cells (VSMCs) were target cells for EFNB3 function in BP regulation. The deletion of EFNB3 augmented contractility of VSMCs from female but not male KO mice, compared with their wild-type (WT) counterparts. Estrogen augmented VSMC contractility while testosterone reduced it in the absence of EFNB3, although these sex hormones had no effect on the contractility of VSMCs from WT mice. The effect of estrogen on KO VSMC contractility was via a nongenomic pathway involving GPER, while that of testosterone was likely via a genomic pathway, according to VSMC contractility assays and GPER knockdown assays. The sex hormone-dependent contraction phenotypes in KO VSMCs were reflected in BP in vivo. Ovariectomy rendered female KO mice normotensive. At the molecular level, EFNB3 KO in VSMCs resulted in reduced myosin light chain kinase phosphorylation, an event enhancing sensitivity to Ca2+ flux in VSMCs. Our investigation has revealed previously unknown EFNB3 functions in BP regulation and show that EFNB3 might be a hypertension risk gene in certain individuals.


1992 ◽  
Vol 262 (6) ◽  
pp. E763-E778 ◽  
Author(s):  
I. A. Reid

The renin-angiotensin system plays an important role in the regulation of arterial blood pressure and in the development of some forms of clinical and experimental hypertension. It is an important blood pressure control system in its own right but also interacts extensively with other blood pressure control systems, including the sympathetic nervous system and the baroreceptor reflexes. Angiotensin (ANG) II exerts several actions on the sympathetic nervous system. These include a central action to increase sympathetic outflow, stimulatory effects on sympathetic ganglia and the adrenal medulla, and actions at sympathetic nerve endings that serve to facilitate sympathetic neurotransmission. ANG II also interacts with baroreceptor reflexes. For example, it acts centrally to modulate the baroreflex control of heart rate, and this accounts for its ability to increase blood pressure without causing a reflex bradycardia. The physiological significance of these actions of ANG II is not fully understood. Most evidence indicates that the actions of ANG to enhance sympathetic activity do not contribute significantly to the pressor response to exogenous ANG II. On the other hand, there is considerable evidence that the actions of endogenous ANG II on the sympathetic nervous system enhance the cardiovascular responses elicited by activation of the sympathetic nervous system.


Sign in / Sign up

Export Citation Format

Share Document