Anti-inflammatory effect of ropivacaine in endotoxin-injured alveolar epithelial cells: Elucidation of cellular signalling

2008 ◽  
Vol 25 (Sup 44) ◽  
pp. 77
Author(s):  
M. Schlaepfer ◽  
S. Blumenthal ◽  
B. Roth-ZʼGraggen ◽  
D. Spahn ◽  
B. Beck-Schimmer
2008 ◽  
Vol 294 (5) ◽  
pp. L882-L890 ◽  
Author(s):  
Saeko Takahashi ◽  
Hidetoshi Nakamura ◽  
Makoto Seki ◽  
Yoshiki Shiraishi ◽  
Miyuki Yamamoto ◽  
...  

Besides lowering cholesterol, statins exert multiple effects, such as anti-inflammatory activity and improvement of endothelial cell function. We examined whether simvastatin (SS) protects against the development of elastase-induced pulmonary emphysema in mice by using mean linear intercepts of alveoli (Lm) as a morphometric parameter of emphysema. After injection of intratracheal elastase on day 0, C57BL/6 mice were treated daily with SS (SS+ group) or PBS (SS− group) for 2 wk. A 21% decrease in Lm on day 7 was observed in the SS+ group vs. the SS− group. Anti-inflammatory effects of SS were observed as a decrease in percentage of neutrophils up to day 3, and in hydroxyproline concentration on day 3, in bronchoalveolar lavage fluid (BALF). SS also increased the number of proliferating cell nuclear antigen (PCNA)-positive alveolar epithelial cells between days 3 and 14. To confirm the role of statins in promoting proliferation of alveolar cells, mice were treated with SS (SS+) vs. PBS (SS−) for 12 days, starting 3 wk after elastase administration. After SS treatment, Lm decreased by 52% and PCNA-positive alveolar epithelial cells increased compared with the SS− group. Concentrations of vascular endothelial growth factor in BALF and endothelial nitric oxide synthase protein expression in pulmonary vessels tended to be higher in the SS+ group vs. the SS− group in this protocol. In conclusion, SS inhibited the development of elastase-induced pulmonary emphysema in mice. This therapeutic effect was due not only to anti-inflammation but also to the promotion of alveolar epithelial cell regeneration, partly mediated by restoring endothelial cell functions.


2020 ◽  
Author(s):  
Seegehalli M Anil ◽  
Nurit Shalev ◽  
Ajjampura C Vinayaka ◽  
Stalin Nadarajan ◽  
Dvory Namdar ◽  
...  

Abstract Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. The purpose of this study was to examine the anti-inflammatory activity of cannabis on markers of immune responses associated with Coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced dose dependently interleukin (IL) 6 and 8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and phytocannabinoid standards that compose FCBD (FCBD:std) reduced IL-6, IL-8, C-C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophages (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining the anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid mixture may show superior activity versus cannabis fraction for reduction of lung inflammation, yet there is a need of caution in proposing cannabis as treatment for COVID-19.


2014 ◽  
Vol 306 (1) ◽  
pp. C59-C65 ◽  
Author(s):  
Kedong Zhang ◽  
Jian Wang ◽  
Hua Jiang ◽  
Xiaoming Xu ◽  
Sheng Wang ◽  
...  

The anti-inflammatory function of tanshinone IIA (TIIA), an active natural compound from Chinese herbal medicine Danshen, has been well recognized, and therefore TIIA has been widely used to treat various inflammatory conditions associated with cardiac and lung diseases. Mucin 1 (Muc1) plays important anti-inflammatory roles in resolution of acute lung inflammation. In this study, we investigated the effects of TIIA on LPS-induced acute lung inflammation, as well as its relationship to Muc1 expression in mouse lung and MUC1 in human alveolar epithelial cells. TIIA pretreatment significantly inhibited LPS-induced pulmonary inflammation in both Muc1 wild-type ( Muc1+/+) and knockout ( Muc1−/−) mice, as manifested by reduced neutrophil infiltration and reduced TNF-α and keratinocyte chemoattractant levels in bronchoalveolar lavage fluid. The inhibitory effects of TIIA on airway inflammation were associated with reduced expression of Muc1 in Muc1+/+ mouse lung. Moreover, pretreatment with TIIA significantly inhibited LPS-induced MUC1 expression and TNF-α release in A549 alveolar epithelial cells. TNF-α upregulated MUC1 mRNA and protein expression in A549 cells, which was inhibited by pretreatment with TIIA. The LPS-induced MUC1 expression was blocked when A549 cells were transfected with siRNA targeting for TNF-α receptor 1. Furthermore, TIIA inhibited LPS-induced nuclear translocation of NF-κB and upregulation of Toll-like receptor 4 in A549 cells. Taken together, these results demonstrate that TIIA suppressed LPS-induced acute lung inflammation regardless of the presence of Muc1, and TIIA inhibited LPS- and TNF-α-induced MUC1/Muc1 expression in airway epithelial cells, suggesting that MUC1/Muc1 does not account for the mechanisms of the anti-inflammatory effects of TIIA in the airway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seegehalli M. Anil ◽  
Nurit Shalev ◽  
Ajjampura C. Vinayaka ◽  
Stalin Nadarajan ◽  
Dvora Namdar ◽  
...  

AbstractCannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards (FCBD:std) reduced IL-6, IL-8, C–C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.


Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
S Seehase ◽  
B Baron-Luehr ◽  
C Kugler ◽  
E Vollmer ◽  
T Goldmann

Sign in / Sign up

Export Citation Format

Share Document