Human Progenitor and Stem Cell Expansion through Selective, Reversible Cytokine Receptor Signaling.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 31-31
Author(s):  
Hisham Abdel-Azim ◽  
Yuhua Zhu ◽  
Roger Hollis ◽  
Xuili Wang ◽  
Qian-Lin Hao ◽  
...  

Abstract There are multiple applications for expansion of Hematopoietic Stem Cells (HSC) and progenitors in transplantation. Gene therapy for most hematopoietic diseases requires selective expansion of genetically corrected HSC to achieve therapeutic effects. Obtaining sufficient number of HSC (CD34+) is a limitation for use of cord blood (CB) in transplantation. Delayed immune recovery following HSC transplantation is associated with increased morbidity and mortality. Murine lymphoid recovery can be hastened by co-transplantation of Common Lymphoid Progenitors (CLP) with HSC, however, the rarity of human CLP in harvested products preclude their clinical use. We hypothesized that human HSC and CLP can be selectively and reversibly expanded by expression of a fusion protein comprised of the intracellular signaling domain of Thrombopoietin receptor (mpl), linked to a specific binding domain (F36V) for the chemical inducer of dimerization AP20187 (CID) (ARIAD Pharmaceuticals). Upon binding of CID to F36V, mpl signaling occurs. A lentiviral vector expressing the fusion protein (F36V-mpl) and a marker gene (GFP) was constructed and efficiently transduced and expressed in human CB HSC (CD34+CD38-CD7-) and CLP (CD34+CD38-CD7+). CID-induced mpl signaling in transduced human CLP maintained robust generation of total, B and NK cells for > 60 days, in cytokine free lymphoid cultures (N=4). Under these conditions transduced HSC cultures (N=4) maintained robust generation of total, B, NK cells for >120 day. Transduced HSC continued to generate clonogenic myelo-erythroid progenitors for > 120 days in ELTC-IC assay (N=4). These cytokine free in vitro assays indicate that CID-induced mpl signaling in human HSC and CLP induced prolonged survival and proliferation of transduced progenitors. Most of the cells generated in the presence of CID expressed GFP (mean 86% GFP+), indicating selective proliferation of transduced cells. Rapid decline in the number of cells expressing GFP was noticed upon withdrawal of CID, indicating reversible activation of mpl signaling in the transduced cells. In contrast, transduced human HSC and CLP cultured without CID, proliferated poorly and differentiated rapidly; viable cells were lost by day 22 of culture. To study whether cells stimulated by CID remained immunophenotypically and functionally primitive after dividing, cell divisions were tracked by labeling with the membrane dye PKH26. Proliferation index of transduced HSC was consistently higher in the presence of CID than in its absence. Human CD34+ cells that had undergone 3 divisions in the presence of CID and in absence of any cytokines, maintained a primitive CD34+ immunophenotype in vitro. In contrast, cells that divided in the absence of CID lost CD34 expression. Cells cultured ± CID were isolated after 3 divisions (based on PKH26 staining) and transplanted in equal numbers (40,000 cell/mouse) into sublethally ablated NOD/SCIDb2m −/− mice to assess function. Only CID-expanded cells were able to engraft, producing B lymphoid and myeloid progeny. Bone marrow harvested from the engrafted animals (N=3) contained clonogenic human myelo-erythroid progenitors (confirmed by Alu PCR of human specific CFU); cells cultured without CID failed to engraft. These studies show that CID-induced mpl signaling expands functionally primitive multipotent, engrafting human progenitors. This is a potential approach to selectively and reversibly expand transduced primitive human progenitors for use in cell therapy.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4899-4899
Author(s):  
Hisayuki Yokoyama ◽  
Maria Berg ◽  
Andreas Lundqvist ◽  
J. Philip McCoy ◽  
Shivani Srivastava ◽  
...  

Abstract The ability to expand NK cells in vitro has led to the recent initiation of protocols incorporating adoptive NK cell infusions after HCT. Calcineurin inhibitors such as CSA are commonly used to prevent graft versus host disease (GVHD) in HCT recipients. Recently, Hong et al found the phenotype and function of fresh NK cells cultured in vitro with CSA was altered, with CSA treated NK cell cultures having enhanced cytotoxicity against tumor targets. However, the impact of CSA on in vitro expanded NK cell function and phenotype has not been explored. We analyzed cell proliferation, IFN-gamma production, cell surface immunofluorescent staining and cytotoxicity against K562 and renal cell carcinoma cell lines by in vitro expanded vs freshly isolated NK cells cultured in physiological doses of CSA (40ng/ml, 200ng/ml, 1000ng/ml for 18hrs). Fresh NK cells were obtained from the PBMC of healthy donors using immunomagnetic beads to isolate CD56+/ CD3− cells. NK cells were expanded in vitro using irradiated EBV transformed B cells as feeder cells in media containing IL-2 [500U/ml] for 12–14 days. Comparing CSA containing cultures to controls, there was a significant reduction in IL-2 stimulated fresh NK cell proliferation (stimulation index 0.51± 0.1) and TRAIL expression (MFI 10.4 vs 3.01). Furthermore, an ELISA assay showed fresh NK cells treated with CSA had a significant reduction in IL-2 induced IFN-g production compared to controls (median 231 vs 57 pg/ml, p=0.025). In contrast, in vitro expanded NK cells cultured in CSA showed no significant reduction of proliferation or TRAIL expression. At the highest doses of CSA (1000ng/ml), minimal inhibition of K562 killing of freshly isolated NK cells was observed. In contrast, expanded NK cells cultured in CSA for 18 hours compared to controls had a significant reduction in the killing of K562 cells (E:T=10:1, median 66 vs 43% lysis, p=0.011) and RCC tumor cells (E:T=20:1, 14.8 vs 8.8%, p=0.043). Figure Figure These data confirm CSA alters the phenotype and function of CD3−/CD56 + NK cells. Importantly, CSA appears to have a deleterious effect on expanded NK cell tumor cytotoxicity that was not observed with fresh NK cells. These finding suggest the anti-tumor effects of in vitro expanded NK cells could be hindered when adoptively infused in HCT patients receiving CSA.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


Blood ◽  
2020 ◽  
Vol 136 (22) ◽  
pp. 2535-2547 ◽  
Author(s):  
W. Grey ◽  
R. Chauhan ◽  
M. Piganeau ◽  
H. Huerga Encabo ◽  
M. Garcia-Albornoz ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul D. Bates ◽  
Alexander L. Rakhmilevich ◽  
Monica M. Cho ◽  
Myriam N. Bouchlaka ◽  
Seema L. Rao ◽  
...  

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii194-ii195
Author(s):  
Nazanin Majd ◽  
Maha Rizk ◽  
Solveig Ericson ◽  
Kris Grzegorzewski ◽  
Sharmila Koppisetti ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with dismal prognosis. Recent advances of immunotherapy in cancer have sparked interest in the use of cell therapy for treatment of GBM. Active transfer of Natural Killer (NK) cells is of particular interest in GBM because NK cells are capable of exerting anti-tumor cytotoxicity without the need for antigen presentation and sensitization, processes that are impaired in GBM. CYNK-001 is an allogeneic, off-the-shelf product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells manufactured by Celularity. Here, we demonstrate in vitro cytotoxicity of CYNK-001 against several GBM lines and its in vivo anti-tumor activity in a U87MG orthotopic mouse model via intracranial administration resulting in 94.5% maximum reduction in tumor volume. We have developed a phase I window-of-opportunity trial of CYNK-001 in recurrent GBM via intravenous (IV) and intratumoral (IT) routes. In the IV cohort, subjects receive cyclophosphamide for lymphodepletion followed by 3-doses of IV CYNK-001 weekly. In the IT cohort, subjects undergo placement of an IT catheter with an ommaya reservoir followed by 3-doses of IT CYNK-001 weekly. Patients are monitored for 28-days after last infusion for toxicity. Once maximum safe dose (MSD) is determined, patients undergo IV or IT treatments at MSD followed by surgical resection and the tumor tissue will be analyzed for NK cell engraftment and persistence. We will utilize a 3 + 3 dose de-escalation design (maximum n=36). Primary endpoint is safety and feasibility. Secondary endpoints are overall response rate, duration of response, time to progression, progression free survival and overall survival. Main eligibility criteria include age ≥18, KPS ≥60, GBM at first or second relapse with a measurable lesion on ≤2mg dexamethasone. This is the first clinical trial to investigate CYNK-001 in GBM and will lay the foundation for future NK cell therapy in solid tumors.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Marie Lue Antony ◽  
Klara Noble-Orcutt ◽  
Yoonku Lee ◽  
Oluwateniayo Ogunsan ◽  
Jeffrey Lee Jensen ◽  
...  

In acute myeloid leukemia (AML), the impact of genetic drivers on response to therapy and long-term survival has been well characterized. AML with complex cytogenetics and TP53 alterations (TP53Alt) is a poor-risk AML subtype that is largely insensitive to chemotherapy, modern targeted agents, and hematopoietic stem cell transplant leading to survival rates 0-10% at 1 year. In contrast, AML with favorable risk molecular features is highly sensitive to chemotherapy and confers survival rates of 50-70%. AML with intermediate risk molecular features can be responsive to chemotherapy and can be cured with hematopoietic stem cell transplant leading to overall survival rates of 30-60%. Leukemia stem cells (LSCs), the cells that recapitulate and propagate leukemia, are central to leukemia progression and relapse. Given the differences in chemo-sensitivity and clinical behavior of genetic subgroups of AML, we asked whether LSCs from poor risk AMLs exhibit distinct signaling activation profiles. We assembled a panel of 23 primary human AML samples with intermediate- and poor- risk genetics and used CyTOF (mass cytometry) to quantitatively measure the levels of immunophenotypic proteins and intracellular signaling molecules in each sample, at the single-cell level. We gated on CD34+CD123+CD3-CD19- cells (LSCs) and measured the level of intracellular signaling molecules within the LSCs of each sample. Notably, the intracellular signaling activation state of LSCs from each AML subtype was distinct; NFkB, pERK, p4EBP1, and pSTAT3 were uniquely upregulated in complex cytogenetics and TP53Alt LSCs, relative to LSCs from intermediate risk AML, suggesting that these signaling pathways may be important for LSC function in this AML subtype. Given that TP53Alt independently confer treatment resistance in AML, we focused on this genetic subgroup. We compared the gene expression profiles of TP53Alt and TP53-wild-type AML samples from the BEAT AML dataset (Tyner et al. Nature 2018) and found that the gene expression profiles of TP53Alt samples are enriched for gene sets representing JAK/STAT signaling, consistent with our CyTOF data, which identified activation of STAT3 in TP53Alt LSCs. A recent drug screen in AML demonstrated that a JAK1/2 kinase inhibitor, AZD1480, can reduce the in vitro viability of TP53-deleted AML cell lines (Nechiporuk et al. Ca Discovery 2019), but these effects were not tested in primary AML samples or on LSCs. Since LSCs confer treatment resistance, we investigated the effect of the AZD1480 on the LSC population in TP53Alt primary human AML samples. AZD1480 treatment abolished all colony formation in primary human TP53Alt AML samples (n=7, 6 replicates per sample, p<0.01). Treatment of these samples in liquid cultures led to a 50% reduction in LSC frequency. We used CyTOF to profile the intracellular signaling states of in vitro treated samples and found that AZD1480 attenuated pSTAT3, pSTAT5, p4EBP1, and NFkB in the LSCs of these samples. The mTOR/4EBp1 and NF༆B pathways have been implicated as drivers of self-renewal and LSC function in AML. Our data suggest that JAK/STAT inhibition may target these pathways in TP53Alt LSCs. These data demonstrate the unique signaling states of TP53Alt LSCs, relative to other LSCs, and show that inhibition of the JAK/STAT pathway specifically targets LSCs within human TP53Alt AML. Figure Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Susmita Sahoo ◽  
Sol Misener ◽  
Tina Thorne ◽  
Meredith Millay ◽  
Kathryn M Schultz ◽  
...  

Local transplantation of human CD34+ hematopoietic stem cells has been shown to promote neovascularization in pre-clinical studies in models of myocardial and limb ischemia. In early phase clinical trials, transplantation of CD34+ cells has been associated with reduced angina, improved exercise time and reduced amputation rates. Several studies have suggested that paracrine effects by these pro-angiogenic cells mediate the effects induced by cell transplantation. We hypothesized that CD34+ cells secrete exosomes (Exo), which mediate at least a part of the therapeutic function of the cells. Methods and Results: We isolated Exo from the conditioned media of adult human peripheral blood (PB) CD34+ cells. The angiogenic and therapeutic potency of CD34+ Exo was compared with the intact CD34+ cells and also with PB mononuclear cell (MNC) Exo. Exo from both CD34+ cells and MNC are 50–90nm in size, have cup shaped morphology, and carry known Exo-marker proteins such as CD63, TSG101 and Annexin V as shown by electron microscopy, Western blot and flow cytometry. Compared to CD34+ cells or MNC Exo, CD34+ Exo significantly induces in vitro angiogenic activities such as viability, proliferation and tube formation of HUVECs on matrigel- in a dose dependent manner. In vivo, CD34+ Exo stimulated significant neovascularization in mouse corneal angiogenesis assay (14±4 mm v MNC Exo, 4±1 mm, p<0.01) and incorporation of endothelial (CD31+) cells in mouse matrigel-plug assay (6±1.7% v CD34+ cells, 2±0.8%, p<0.01). Finally, in a mouse model of hind limb ischemia (HLI), CD34+ Exo significantly improved perfusion (ratio: 1.01±0.04 v 0.57±0.1, P<0.05), increased capillary density (1.8±0.3/HPF v 0.9±0.1/HPF, p<0.001) and prevented ischemic leg amputation (16% v 100%), as compared with MNC Exo. Conclusions: These data demonstrate that CD34+ Exo induce angiogenic activity and ischemic tissue repair in the absence of CD34+ cells, and suggest that Exo represent important mediators of the therapeutic effects associated with CD34+ cell therapy. We speculate that Exo derived from CD34+ cells may represent a significant component of the paracrine effect of progenitor-cell transplantation for therapeutic angiogenesis.


2006 ◽  
Vol 29 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Meg L. Flanagan ◽  
Leslie A. Khawli ◽  
Peisheng Hu ◽  
Alan L. Epstein

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3595
Author(s):  
Léa Dubreuil ◽  
Bercelin Maniangou ◽  
Patrice Chevallier ◽  
Agnès Quéméner ◽  
Nolwenn Legrand ◽  
...  

We have recently shown a broad disparity of Natural Killer (NK) cell responses against leukemia highlighting good and bad responders resting on the Killer cell Immunoglobulin-like Receptors (KIR) and HLA genetics. In this study, we deeply studied KIR2D allele expression, HLA-C recognition and functional effect on NK cells in 108 blood donors in combining high-resolution KIR allele typing and multicolor flow cytometry. The KIR2DL1*003 allotype is associated with centromeric (cen) AA motif and confers the highest NK cell frequency, expression level and strength of KIR/HLA-C interactions compared to the KIR2DL1*002 and KIR2DL1*004 allotypes respectively associated with cenAB and BB motifs. KIR2DL2*001 and *003 allotypes negatively affect the frequency of KIR2DL1+ and KIR2DL3+ NK cells. Altogether, our data suggest that cenAA individuals display more efficient KIR2DL alleles (L1*003 and L3*001) to mount a consistent frequency of KIR2DL+ NK cells and to confer an effective NK cell responsiveness. The transposition of our in vitro observations in the T-replete haplo-identical HSCT context led us to observe that cenAA HSC grafts limit significantly the incidence of relapse in patients with myeloid diseases after T-replete haplo-identical HSCT. As NK cells are crucial in HSCT reconstitution, one could expect that the consideration of KIR2DL1/2/3 allelic polymorphism could help to refine scores used for HSC donor selection.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 15-23 ◽  
Author(s):  
James C. Mulloy ◽  
Jörg Cammenga ◽  
Karen L. MacKenzie ◽  
Francisco J. Berguido ◽  
Malcolm A. S. Moore ◽  
...  

The acute myelogenous leukemia–1 (AML1)–ETO fusion protein is generated by the t(8;21), which is found in 40% of AMLs of the French-American-British M2 subtype. AML1-ETO interferes with the function of the AML1 (RUNX1, CBFA2) transcription factor in a dominant-negative fashion and represses transcription by binding its consensus DNA–binding site and via protein-protein interactions with other transcription factors. AML1 activity is critical for the development of definitive hematopoiesis, and haploinsufficiency of AML1 has been linked to a propensity to develop AML. Murine experiments suggest that AML1-ETO expression may not be sufficient for leukemogenesis; however, like the BCR-ABL isoforms, the cellular background in which these fusion proteins are expressed may be critical to the phenotype observed. Retroviral gene transfer was used to examine the effect of AML1-ETO on the in vitro behavior of human hematopoietic stem and progenitor cells. Following transduction of CD34+ cells, stem and progenitor cells were quantified in clonogenic assays, cytokine-driven expansion cultures, and long-term stromal cocultures. Expression of AML1-ETO inhibited colony formation by committed progenitors, but enhanced the growth of stem cells (cobblestone area-forming cells), resulting in a profound survival advantage of transduced over nontransduced cells. AML1-ETO–expressing cells retained progenitor activity and continued to express CD34 throughout the 5-week long-term culture. Thus, AML1-ETO enhances the self-renewal of pluripotent stem cells, the physiological target of many acute myeloid leukemias.


Sign in / Sign up

Export Citation Format

Share Document