The activation of hypothalamic AMP-activated protein kinase by oxidative stress is related to hyperphagia in diabetic rats

Neuroreport ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Juan M. Mendoza-Bello ◽  
Martha I. Barragán-Bonilla ◽  
Mónica Ramírez ◽  
Eugenia Flores-Alfaro ◽  
Alejandro Millán-Vega ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masanori Asakura ◽  
...  

Background; Several studies have shown that metformin activates AMP-activated protein kinase (AMPK), which mediates potent cardioprotection against ischemia-reperfusion injury. AMPK is also activated in experimental failing myocardium, suggesting that activation of AMPK is beneficial for the pathophysiology of heart failure. We investigated whether metformin prevents oxidative stress-induced cell death in rat cardiomyocytes and attenuates the progression of heart failure in dogs. Methods and Results; The treatment with metformin (10 μmol/L) protected the rat cultured cardiomyocytes against cell death due to H 2 O 2 exposure (50 μmol/L) as indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), TUNEL staining, and flow cytometry. These effects were blunted by an AMPK inhibitor, compound-C (20 μmol/L), suggesting that the activation of AMPK decreased the extent of apoptosis-induced cell death due to H 2 O 2 exposure. Continuous rapid ventricular pacing (230/min for 4 weeks) in dogs caused heart failure and the treatment with metformin (100 mg/kg/day PO, n=8) decreased left ventricular (LV) end-diastolic dimension (32.8±0.4 vs. 36.5±1.0 mm, p< 0.01) and pressure (11.8±1.1 vs. 22±0.9 mmHg, p< 0.01), and increased LV fractional shortening (18.6±1.8 vs. 9.6±0.7 %, p< 0.01) along with enhanced phosphorylation of AMPK and the decreased the number of TUNEL-positive cells of the LV myocardium compared with the vehicle group (n=8). Interestingly, metformin increased the protein and mRNA levels of endothelial nitric oxide synthase of the LV myocardium and plasma nitric oxide levels. Metformin improved the plasma insulin resistance without increased myocardial GLUT-4 translocation. Furthermore, the subcutaneous administration of AICAR (50 mg/kg/every other day), another AMPK activator mediated the equivalent effects to metformin, strengthening the pivotal role of AMPK in reduction of apoptosis and prevention of heart failure. Conclusions; Activation of myocardial AMPK attenuated the oxidative stress-induced cardiomyocyte apoptosis and prevented the progression of heart failure in dogs, along with eNOS activation. Thus, metformin or AICAR may be applicable as a novel therapy for heart failure.


2018 ◽  
Vol 17 (4) ◽  
pp. 661-668
Author(s):  
Manoj Mandal ◽  
Rakibuzzaman ◽  
Begum Rokeya ◽  
Liaquat Ali ◽  
Zahid Hassan ◽  
...  

AMP-activated protein kinase (AMPK) and c-AMP-response element binding protein (CREB) are found to be important proteins in metabolic system. AMPK has become the focus as a novel therapeutic target for the treatment of metabolic syndromes. Oyster mushroom is traditionally used as remedy of diabetes and hypertension. The present study aims to observe the stimulation of AMPK and CREB in streptozotocin-induced diabetic model rats through Oyster mushroom administration. Long Evan’s rats were used to create type 2 model diabetic rats through intraperitoneal injection of streptozotocin at 90mg/kg body weight of 48hr old pups. Rats were divided into three groups: diabetic control rats, glibenclamide treated diabetic rats (positive control) and mushroom treated diabetic rats (experimental group). Mushroom was administered orally at a dose of 1.25g/kg body weight in semisolid forms. After five weeks rats were sacrificed, serum and tissues were collected for future analysis. Glucose was measured using glucose-oxidase method, lipid profile by enzymaticcolorimetric method. Proteins from different tissues were extracted using RIPA cell lysis buffer, AMPK and CREB were identified using western blot and immuno-precipitation techniques. A significant decreased of fasting glucose was found after 35 days of experiment when it compared with control diabetic rats (M ± SD, mmol/l, Diabetic control group: 8.0±1.1; Mushroom treated diabetic group: 6.4±1.0; p=0.021). Glibenclamide treated diabetic rats have also shown decreased fasting glucose compared to control diabetic rats. In paired ‘t’ test analysis, it has been found that serum fasting glucose level was significantly decreased on 35th day compared the 0 day in both mushroom treated group (p=0.027) and in glibenclamide treated group (p=0.005). Serum TG level was decreased on 35th day compared to 0day in mushroom treated diabetic model rats only (M±SD, mg/dl, 0 day: 84±13; 35th day: 61±6, p=0.002). No significant changes of cholesterol, HDL and LDL were noticed in the experimental groups following treatment with mushroom. Western blot analyses have shown increased band intensity of AMPK and p-CREB in mushroom treated diabetic model rats. Therefore, it can be concluded that Anti-hyperglycemic property of Oyster mushroom could be explained through increased expression of AMPK and activation of CREB.Bangladesh Journal of Medical Science Vol.17(4) 2018 p.661-668


2019 ◽  
Vol 863 ◽  
pp. 172677 ◽  
Author(s):  
Maja Jovanovic-Tucovic ◽  
Ljubica Harhaji-Trajkovic ◽  
Marija Dulovic ◽  
Gordana Tovilovic-Kovacevic ◽  
Nevena Zogovic ◽  
...  

2004 ◽  
Vol 287 (1) ◽  
pp. E166-E173 ◽  
Author(s):  
Taro Toyoda ◽  
Tatsuya Hayashi ◽  
Licht Miyamoto ◽  
Shin Yonemitsu ◽  
Masako Nakano ◽  
...  

Recent studies have suggested that 5′AMP-activated protein kinase (AMPK) is activated in response to metabolic stresses, such as contraction, hypoxia, and the inhibition of oxidative phosphorylation, which leads to insulin-independent glucose transport in skeletal muscle. In the present study, we hypothesized that acute oxidative stress increases the rate of glucose transport via an AMPK-mediated mechanism. When rat epitrochlearis muscles were isolated and incubated in vitro in Krebs buffer containing the oxidative agent H2O2, AMPKα1 activity increased in a time- and dose-dependent manner, whereas AMPKα2 activity remained unchanged. The activation of AMPKα1 was associated with phosphorylation of AMPK Thr172, suggesting that an upstream kinase is involved in the activation process. H2O2-induced AMPKα1 activation was blocked in the presence of the antioxidant N-acetyl-l-cysteine (NAC), and H2O2 significantly increased the ratio of oxidized glutathione to glutathione (GSSG/GSH) concentrations, a sensitive marker of oxidative stress. H2O2 did not cause an increase in the conventional parameters of AMPK activation, such as AMP and AMP/ATP. H2O2 increased 3- O-methyl-d-glucose transport, and this increase was partially, but significantly, blocked in the presence of NAC. Results were similar when the muscles were incubated in a superoxide-generating system using hypoxanthine and xanthine oxidase. Taken together, our data suggest that acute oxidative stress activates AMPKα1 in skeletal muscle via an AMP-independent mechanism and leads to an increase in the rate of glucose transport, at least in part, via an AMPKα1-mediated mechanism.


Sign in / Sign up

Export Citation Format

Share Document