scholarly journals Grunting for worms: seismic vibrations cause Diplocardia earthworms to emerge from the soil

2008 ◽  
Vol 5 (1) ◽  
pp. 16-19 ◽  
Author(s):  
O Mitra ◽  
M.A Callaham ◽  
M.L Smith ◽  
J.E Yack

Harvesting earthworms by a practice called ‘worm grunting’ is a widespread and profitable business in the southeastern USA. Although a variety of techniques are used, most involve rhythmically scraping a wooden stake driven into the ground, with a flat metal object. A common assumption is that vibrations cause the worms to surface, but this phenomenon has not been studied experimentally. We demonstrate that Diplocardia earthworms emerge from the soil within minutes following the onset of grunting. Broadband low frequency (below 500 Hz) pulsed vibrations were present in the soil throughout the area where worms were harvested, and the number of worms emerging decreased as the seismic signal decayed over distance. The findings are discussed in relation to two hypotheses: that worms are escaping vibrations caused by digging foragers and that worms are surfacing in response to vibrations caused by falling rain.

2021 ◽  
Author(s):  
Leonard Seydoux ◽  
Michel Campillo ◽  
René Steinmann ◽  
Randall Balestriero ◽  
Maarten de Hoop

<p>Slow slip events are observed in geodetic data, and are occasionally associated with seismic signatures such as slow earthquakes (low-frequency earthquakes, tectonic tremors). In particular, it was shown that swarms of slow earthquake can correlate with slow slip events occurrence, and allowed to reveal the intermittent behavior of several slow slip events. This observation was possible thanks to detailed analysis of slow earthquakes catalogs and continuous geodetic data, but in every case, was limited to particular classes of seismic signatures. In the present study, we propose to infer the classes of seismic signals that best correlate with the observed geodetic data, including the slow slip event. We use a scattering network (a neural network with wavelet filters) in order to find meaningful signal features, and apply a hierarchical clustering algorithm in order to infer classes of seismic signal. We then apply a regression algorithm in order to predict the geodetic data, including slow slip events, from the occurrence of inferred seismic classes. This allow to (1) identify seismic signatures associated with the slow slip events as well as (2) infer the the contribution of each classes to the overall displacement observed in the geodetic data. We illustrate our strategy by revisiting the slow-slip event of 2006 that occurred beneath Guerrero, Mexico.</p>


2020 ◽  
Vol 91 (6) ◽  
pp. 3417-3432
Author(s):  
Ashton F. Flinders ◽  
Ingrid A. Johanson ◽  
Phillip B. Dawson ◽  
Kyle R. Anderson ◽  
Matthew M. Haney ◽  
...  

Abstract Throughout the 2018 eruption of Kīlauea volcano (Hawai‘i), episodic collapses of a portion of the volcano’s summit caldera produced repeated Mw 4.9–5.3 earthquakes. Each of these 62 events was characterized by a very-long-period (VLP) seismic signal (>40  s). Although collapses in the later stage of the eruption produced earthquakes with significant amplitude clipping on near-summit broadband seismometers, the first 12 were accurately recorded. For these initial collapse events, we compare average VLP seismograms at six near-summit locations to synthetic seismograms derived from displacements at collocated Global Positioning System stations. We show that the VLP seismic signal was generated by a radially outward and upward ramp function in displacement. We propose that at local distances the period of the VLP seismic signal is solely dependent on the duration of this ramp function and the instrument transfer function, that is, the seismic VLP is an artifact of the bandlimited instrument response and not representative of real ground motion. The displacement ramp function imposes a sinc-function velocity amplitude spectrum that cannot be fully recovered through standard seismic instrument deconvolution. Any near-summit VLP signals in instrument-response-corrected velocity or displacement seismograms from these collapse events are subject to severe band limitation. Similarly, the seismic amplitude response is not flat through the low-frequency corner, for example, instrument-response-uncorrected seismograms scaled by instrument sensitivity are equally prone to band limitation. This observation is crucial when attempting to clarify the different contributions to the VLP source signature. Not accounting for this effect could lead to misunderstanding of the magmatic processes involved.


2020 ◽  
Vol 39 (7) ◽  
pp. 480-487
Author(s):  
Patrick Smith ◽  
Brandon Mattox

The P-Cable high-resolution 3D marine acquisition system tows many short, closely separated streamers behind a small source. It can provide 3D seismic data of very high temporal and spatial resolution. Since the system is containerized and has small dimensions, it can be deployed at short notice and relatively low cost, making it attractive for time-lapse seismic reservoir monitoring. During acquisition of a 3D high-resolution survey in the Gulf of Mexico in 2014, a pair of sail lines were repeated to form a time-lapse seismic test. We processed these in 2019 to evaluate their geometric and seismic repeatability. Geometric repetition accuracy was excellent, with source repositioning errors below 10 m and bin-based receiver positioning errors below 6.25 m. Seismic data comparisons showed normalized root-mean-square difference values below 10% between 40 and 150 Hz. Refinements to the acquisition system since 2014 are expected to further improve repeatability of the low-frequency components. Residual energy on 4D difference seismic data was low, and timing stability was good. We conclude that the acquisition system is well suited to time-lapse seismic surveying in areas where the reservoir and time-lapse seismic signal can be adequately imaged by small-source, short-offset, low-fold data.


2014 ◽  
Vol 14 (12) ◽  
pp. 3175-3193 ◽  
Author(s):  
P. Bottelin ◽  
D. Jongmans ◽  
D. Daudon ◽  
A. Mathy ◽  
A. Helmstetter ◽  
...  

Abstract. The eastern limestone cliff of Mount Néron (French Alps) was the theater for two medium-size rockfalls between summer and winter 2011. On 14 August 2011, a ~2000 m3 rock compartment detached from the cliff, fell 100 m below and propagated down the slope. Although most of the fallen rocks deposited on the upper part of the slope, some blocks of about 15 m in size were stopped by a ditch and an earthen barrier after a run-out of 800 m. An unstable overhanging ~2600 m3 compartment remained attached to the cliff and was blasted on 13 December 2011. During this artificially triggered event, 7 blocks reached the same ditch, with volumes ranging from 0.8 to 12 m3. A semi-permanent seismic array located about 2.5 km from the site recorded the two events, providing a unique opportunity to understand and to compare the seismic phases generated during natural and artificially triggered rockfalls. Both events have signal duration of ~100 s with comparable maximum amplitudes recorded at large distances (computed local magnitude of 1.14 and 1.05, respectively), most of the energy lying below 20 Hz. Remote sensing techniques (photogrammetry and lidar) were employed before and after the provoked rockfall, allowing the volume and fracturing to be characterized. This event was filmed by two video cameras, and the generated ground motions were recorded using two temporary 3C seismic sensors and three seismic arrays deployed at the slope toe. Videos and seismogram processing provided estimates of the propagation velocity during the successive rockfall phases, which ranges from 12 to 30 m s−1. The main seismic phases were obtained from combined video and seismic signal analyses. The two most energetic phases are related to the ground impact of fallen material after free fall, and to individual rock block impacts into the ditch and the earthen barrier. These two phases are characterized by similar low-frequency content but show very different particle motions. The discrete element technique allowed reproducing the key features of the rockfall dynamics, yielding propagation velocities compatible with experimental observations.


2020 ◽  
Vol 8 (1) ◽  
pp. SA49-SA61
Author(s):  
Huihuang Tan ◽  
Donghong Zhou ◽  
Shengqiang Zhang ◽  
Zhijun Zhang ◽  
Xinyi Duan ◽  
...  

Amplitude-variation-with-offset (AVO) technique is one of the primary quantitative hydrocarbon discrimination methods with prestack seismic data. However, the prestack seismic data are usually have low data quality, such as nonflat gathers and nonpreserved amplitude due to absorption, attenuation, and/or many other reasons, which usually lead to a wrong AVO response. The Neogene formations in the Huanghekou area of the Bohai Bay Basin are unconsolidated clastics with a high average porosity, and we find that the attenuation on seismic signal is very strong, which causes an inconsistency of AVO responses between seismic gathers and its corresponding synthetics. Our research results indicate that the synthetic AVO response can match the field seismic gathers in the low-frequency end, but not in the high-frequency components. Thus, we have developed an AVO response correction method based on high-resolution complex spectral decomposition and low-frequency constraint. This method can help to achieve a correct high-resolution AVO response. Its application in Bohai oil fields reveals that it is an efficient way to identify hydrocarbons in rocks, which provides an important technique for support in oil and gas exploration and production in this area.


1970 ◽  
Vol 60 (5) ◽  
pp. 1607-1613 ◽  
Author(s):  
Robert F. Mereu ◽  
Ronald J. Kovach

Abstract A portable seismic system designed for use in crustal experiments is discussed in this paper. The main features of the system which make it attractive are (1) a 7-lb commercial stereo tape recorder, (2) a simple chronometer, (3) a capability to be monitored in the field with a speaker rather than with a paper recorder, (4) a timer for self-operation, and (5) low overall power requirements. The seismic signal from the seismometer is amplified and fed to one channel of the recorder via a voltage-to-frequency converter so that very low-frequency signals can be recorded. Three additional signals made up of a WWVB radio time signal, a 100-Hz oscillator signal (to be used for compensation) and a 10-sec mark from a chronometer are fed into the second channel of the stereo recorder. The total weight of the instrumentation including the seismometer and carrying case is only 51 lb. This system will operate for over 120 hr with 27 lb of 6-volt batteries. This is more than sufficient for most crustal experiments. Because of its lightness and self-operating features, the system can easily be transported to remote areas by light aircraft at a minimum of expense and trouble.


2014 ◽  
Vol 687-691 ◽  
pp. 3175-3178 ◽  
Author(s):  
Pei Cui ◽  
Chun Zhi Bai

In the special marine environmental conditions, there are certain advantages of ship seismic wave relative to underwater acoustic signal. However, due to the poor performance of seismic wave sensor, it is difficult to effectively detect seismic signal. From the signal characteristics of ship seismic wave, we can see that the ship seismic wave signal is better than underwater acoustic signal through comparative analysis in some special environment. In the low frequency band of DC-20Hz, the energy of the ship seismic is stronger and the line spectrum is more obvious. It briefly explains the mathematical model of ocean bottom seismometers receiving ship seismic wave information based on coupling theory. Finally, this paper focuses on many factors need to be considered in the selection of seismic wave sensor from the structure, type and performance of sensor. In view of different functionality of sensor types, it is suggested to use acceleration sensor to detect the ship seismic wave signal.


2020 ◽  
Author(s):  
John Clinton ◽  
Domenico Giardini ◽  
Savas Ceylan ◽  
Martin van Driel ◽  
Simon Stähler ◽  
...  

<p>InSight landed on Mars in late November 2018, and the SEIS seismometer package was fully deployed by February 2019. By January 2020, SEIS continues to exceed performance expectations in terms of observed minimum noise. The Marsquake Service (MQS) has been setup to create and curate a seismicity catalogue for Mars over the lifetime of the InSight mission. Seismic waveforms are downloaded daily from the station and are analysed and processed by the MarsQuake Service, with the goal of detecting seismic vibrations not due to local ambient sources. To this end, every precaution is applied to eliminate possible non-seismic sources, such as noise induced by atmospheric phenomena, lander vibrations and orbiter activity. At the date of submission, we have detected 365 events, of different quality and SNR levels. Signal amplitudes remain small and signal can generally only be detected at night. Some events show only low-frequency waves in the 1-10 sec band, others have a high-frequency content up to several Hz, and others have a more broad-band character. A special class of events involves the excitation of a very prominent ambient vibration at 2.4Hz. Despite the scattered nature of the energy, in many cases, distinct phases can be inferred in the waveforms. Body wave character, and back-azimuth, can only be confirmed for 3 broadband events so far.  The MQS approach for determining distances from broadband events identifies phases as mantle P and S-phases and uses an a priori set of several thousand martian models, derived from geophysical, mineralogical and orbital constraints. High frequency events are currently located assuming phases are trapped crustal Pg and Sg and using a simple crustal layer. The MQS works in conjunction with the Mars Structural Service (MSS) on building and adopting updated models. The MQS consists of an international team of seismologists that screen incoming data to identify and characterise any seismicity. In this presentation, we present the MQS, demonstrate how we detect and characterise marsquakes, and describe the challenges we face dealing with the Martian dataset.</p>


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. WA13-WA24 ◽  
Author(s):  
Ru-Shan Wu ◽  
Jingrui Luo ◽  
Bangyu Wu

We recognized that the envelope fluctuation and decay of seismic records carries ultra low-frequency (ULF, i.e., the frequency below the lowest frequency in the source spectrum) signals that can be used to estimate the long-wavelength velocity structure. We then developed envelope inversion for the recovery of low-wavenumber components of media (smooth background), so that the initial model dependence of waveform inversion can be reduced. We derived the misfit function and the corresponding gradient operator for envelope inversion. To understand the long-wavelength recovery by the envelope inversion, we developed a nonlinear seismic signal model, the modulation signal model, as the basis for retrieving the ULF data and studied the nonlinear scale separation by the envelope operator. To separate the envelope data from the wavefield data (envelope extraction), a demodulation operator (envelope operator) was applied to the waveform data. Numerical tests using synthetic data for the Marmousi model proved the validity and feasibility of the proposed approach. The final results of combined [Formula: see text] (envelope-inversion for smooth background plus waveform-inversion for high-resolution velocity structure) indicated that it can deliver much improved results compared with regular full-waveform inversion (FWI) alone. Furthermore, to test the independence of the envelope to the source frequency band, we used a low-cut source wavelet (cut from 5 Hz below) to generate the synthetic data. The envelope inversion and the combined [Formula: see text] showed no appreciable difference from the full-band source results. The proposed envelope inversion is also an efficient method with very little extra work compared with conventional FWI.


2020 ◽  
Vol 91 (5) ◽  
pp. 2936-2941
Author(s):  
Xiaofeng Liang ◽  
Sicheng Zuo ◽  
Shilin Li ◽  
Yongge Feng

Abstract A temporary seismometer vault was buried by a moving sand dune in the Taklimakan Desert at northwestern China in October 2019. The dune gradually covered the solar panel and the power supply to the seismic station was subsequently cut off. Here, we show that the burial process can be diagnosed according to the temperature record from the thermometer in the data-logger, an ultra-low-frequency seismic signal, and the change of high-frequency noise level from the continuous seismograms recorded by the broadband seismometer. The ultra-low-frequency seismic signal reflects the thermoelastic effect of the suspension spring in the seismometer corresponding to the temperature gradient in the sensor vault. At the same time, the variation of high-frequency noise level correlates well with the temperature profile and the ultra-low-frequency seismic signal, indicating the ground wind intensity. The peak frequency shifts and their different responses on three-component waveforms for the high-frequency noise might reflect the distance from the moving dunes to the station and their moving directions. This observation shows a potential usage of continuous seismograms to study rapid environment change around a temporary seismic station.


Sign in / Sign up

Export Citation Format

Share Document