scholarly journals Colour polymorphism influences species' range and extinction risk

2019 ◽  
Vol 15 (7) ◽  
pp. 20190228 ◽  
Author(s):  
Yuma Takahashi ◽  
Suzuki Noriyuki

Polymorphisms in a population are expected to increase the growth rate and the stability of the population, leading to the expansion of geographical distribution and mitigation of extinction risk of a species. However, the generality of such ecological consequences of colour polymorphism remains uncertain. Here, via a comparative approach, we assessed whether colour polymorphisms influence climatic niche breadth and extinction risk in some groups of damselflies, butterflies and vertebrates. The climatic niche breadth was greater, and extinction risk was lower in polymorphic species than in monomorphic species in all taxa analysed. The results suggest that colour polymorphism facilitates range expansion and species persistence.

1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


2018 ◽  
Vol 8 (1) ◽  
pp. 52-56
Author(s):  
Vimlesh Patel

The paper presents a Scientometrics mapping of papers published inJournal of Computer Science and Technology, during 2012 to 2016 as reflected in Web of Science database. It attempts to analyze the growth and development of publications output of Journal of Computer Science and Technologyas reflected. Data for a total of 485 have been downloaded and analysed according to objectives. The study reveals thatThe year wise growth rate revel that highest no. papers published in 2015, No. of Papers: 106 (21.86%) Authorship pattern data reveals that most of the authors like to publish papers in collaborations and most preferred authorship pattern was four author i.e. no. publications for four authors were 125 (25.77 %). The Degree of Collaboration (DC) revel that DC is found highest in 0.95 Co-Authored Publication. The highly prolific authors and their publications revel that Zhang L, published highest numbers of papers (11 nos.), the geographical distribution contributions (International) is revel that Peoples R China is in the top with no. of publications is 371 (76.50%), it is found from institution-wise distribution of papers that highest contributed institutions was Chinese Academy of Sciences with 93 Publications (19.18%) is placed at 1st rank and the average of citations per year (2012-2016) were 205.


2014 ◽  
Vol 755 ◽  
pp. 705-731 ◽  
Author(s):  
Sasan Sarmast ◽  
Reza Dadfar ◽  
Robert F. Mikkelsen ◽  
Philipp Schlatter ◽  
Stefan Ivanell ◽  
...  

AbstractTwo modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier–Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tjæreborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral triggers instabilities, leading to breakdown of the wake. Based on the grid configurations and the type of excitations, two basic flow cases, symmetric and asymmetric, are identified. In the symmetric setup, we impose a 120° symmetry condition in the dynamics of the flow and in the asymmetric setup we calculate the full 360° wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific frequencies and spatial structures, e.g. two dominant groups of modes with positive growth (spatial structures) are identified, while breaking the symmetry reveals that almost all the modes have positive growth rate. In both setups, the most unstable modes have a non-dimensional spatial growth rate close to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ and they are characterized by an out-of-phase displacement of successive helix turns leading to local vortex pairing. The present results indicate that the asymmetric case is crucial to study, as the stability characteristics of the flow change significantly compared to the symmetric configurations. Based on the constant non-dimensional growth rate of disturbances, we derive a new analytical relationship between the length of the wake up to the turbulent breakdown and the operating conditions of a wind turbine.


2010 ◽  
Vol 14 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Praveen Sharma ◽  
Ram Prajapati ◽  
Rajendra Chhajlani

The linear Rayleigh-Taylor instability of two superposed incompressible magnetized fluids is investigated incorporating the effects of suspended dust particles and viscosity. The basic magnetohydrodynamic set of equations have been constructed and linearized. The dispersion relation for 2-D and 3-D perturbations is obtained by applying the appropriate boundary conditions. The condition of Rayleigh-Taylor instability is investigated for potentially stable and unstable modes, which depends upon magnetic field, viscosity and suspended dust particles. The stability of the system is discussed by applying the Routh-Hurwitz criterion. It is found that the Alfven mode comes into the dispersion relation for perturbations in x, y-directions and in only x-direction, while it does not come into y-directional perturbation. The stable configuration is found to remain stable even in the presence of suspended dust particles. Numerical calculations have been performed to see the effects of various parameters on the growth rate of Rayleigh-Taylor instability. It is found that magnetic field and relaxation frequency of suspended dust particles both have destabilizing influence on the growth rate of Rayleigh-Taylor instability. The effects of kinematic viscosity and mass concentration of dust particles are found to have stabilized the growth rate of linear Rayleigh-Taylor instability.


2008 ◽  
Vol 12 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Aiyub Khan ◽  
Neha Sharma ◽  
P.K. Bhatia

The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.


2014 ◽  
Vol 694 ◽  
pp. 288-291
Author(s):  
Run Ze Duan ◽  
Zhi Ying Chen ◽  
Li Jun Yang

An electrified liquid sheet injected into a dielectric moving through a viscous gas bounded by two horizontal parallel flat plates of a transverse electric field is investigated with the linear analysis method. The liquid sheet velocity profile and the gas boundary layer thickness are taken into account. The relationship between temporal growth rate and the wave number was obtained using linear stability analysis and solved using the Chebyshev spectral collocation method. The effects of the velocity profile on the stability of the electrified liquid sheet were revealed for both sinuous mode and varicose mode. The results show that the growth rate of the electrified Newtonian liquid is greater than that of corresponding Newtonian one under the same condition, and the growth rate of the sinuous mode is greater than that of the varicose mode. Keywords: instability; planar liquid sheet; velocity profile;spectral method;linear analysis


Author(s):  
P. F. Cannon

Abstract A description is provided for Phyllachora dalbergiae. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Known from Dalbergia ferruginea, D. latifolia, D. nitidula, D. sissoo, D. stipulacea and D. variabilis. DISEASE: Causes a leaf spot of Dalbergia species. No research into the epidemiology or virulence of this disease has been carried out, but as the host genus is prominent and widespread it seems unlikely that serious damage is caused. In cases where the fungus is well established on the host, however, significant retardation of the growth rate must result. GEOGRAPHICAL DISTRIBUTION: Africa: Tanzania, Zimbabwe. Asia: Burma, India, Philippines. South America: Brazil. TRANSMISSION: This has not been studied, but it almost certainly occurs through the air-borne dispersal of ascospores in wind currents, which then directly infect the host leaves.


Author(s):  
P. F. Cannon

Abstract A description is provided for Phyllachora contigua. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Recorded from Millettia caudata, M. pallens and M.? stapfiana. DISEASE: Causes a leaf spot of Millettia species. Nothing is known of the development of the disease, but it is likely to cause little damage to the host in common with other Phyllachora species. However, heavy infestation would undoubtedly significantly affect the growth rate of the tree. Individual infections are probably confined to the leaves in which they occur. GEOGRAPHICAL DISTRIBUTION: Africa: Ethiopia, Ghana, Guinea, Sierra Leone. Asia: India. TRANSMISSION: This has not been studied, but probably occurs through air dispersal of ascospores and direct infection of leaves, the ascospores germinating to produce appressoria and infection pegs.


1987 ◽  
Vol 127 ◽  
pp. 515-516
Author(s):  
P.L. Palmer ◽  
J. Papaloizou

We consider the linear stability of spherical stellar systems by solving the Vlasov and Poisson equations which yield a matrix eigenvalue problem to determine the growth rate. We consider this for purely growing modes in the limit of vanishing growth rate. We show that a large class of anisotropic models are unstable and derive growth rates for the particular example of generalized polytropic models. We present a simple method for testing the stability of general anisotropic models. Our anlysis shows that instability occurs even when the degree of anisotropy is very slight.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050053
Author(s):  
Mainul Hossain ◽  
Nikhil Pal ◽  
Sudip Samanta ◽  
Joydev Chattopadhyay

In the present paper, we investigate the impact of fear in an intraguild predation model. We consider that the growth rate of intraguild prey (IG prey) is reduced due to the cost of fear of intraguild predator (IG predator), and the growth rate of basal prey is suppressed due to the cost of fear of both the IG prey and the IG predator. The basic mathematical results such as positively invariant space, boundedness of the solutions, persistence of the system have been investigated. We further analyze the existence and local stability of the biologically feasible equilibrium points, and also study the Hopf-bifurcation analysis of the system with respect to the fear parameter. The direction of Hopf-bifurcation and the stability properties of the periodic solutions have also been investigated. We observe that in the absence of fear, omnivory produces chaos in a three-species food chain system. However, fear can stabilize the chaos thus obtained. We also observe that the system shows bistability behavior between IG prey free equilibrium and IG predator free equilibrium, and bistability between IG prey free equilibrium and interior equilibrium. Furthermore, we observe that for a suitable set of parameter values, the system may exhibit multiple stable limit cycles. We perform extensive numerical simulations to explore the rich dynamics of a simple intraguild predation model with fear effect.


Sign in / Sign up

Export Citation Format

Share Document