scholarly journals A deep learning approach to the structural analysis of proteins

2019 ◽  
Vol 9 (3) ◽  
pp. 20190003 ◽  
Author(s):  
Marco Giulini ◽  
Raffaello Potestio

Deep learning (DL) algorithms hold great promise for applications in the field of computational biophysics. In fact, the vast amount of available molecular structures, as well as their notable complexity, constitutes an ideal context in which DL-based approaches can be profitably employed. To express the full potential of these techniques, though, it is a prerequisite to express the information contained in a molecule’s atomic positions and distances in a set of input quantities that the network can process. Many of the molecular descriptors devised so far are effective and manageable for relatively small structures, but become complex and cumbersome for larger ones. Furthermore, most of them are defined locally, a feature that could represent a limit for those applications where global properties are of interest. Here, we build a DL architecture capable of predicting non-trivial and intrinsically global quantities, that is, the eigenvalues of a protein’s lowest-energy fluctuation modes. This application represents a first, relatively simple test bed for the development of a neural network approach to the quantitative analysis of protein structures, and demonstrates unexpected use in the identification of mechanically relevant regions of the molecule.

2019 ◽  
Author(s):  
Kushal K. Dey ◽  
Bryce Van de Geijn ◽  
Samuel Sungil Kim ◽  
Farhad Hormozdiari ◽  
David R. Kelley ◽  
...  

AbstractDeep learning models have shown great promise in predicting genome-wide regulatory effects from DNA sequence, but their informativeness for human complex diseases and traits is not fully understood. Here, we evaluate the disease informativeness of allelic-effect annotations (absolute value of the predicted difference between reference and variant alleles) constructed using two previously trained deep learning models, DeepSEA and Basenji. We apply stratified LD score regression (S-LDSC) to 41 independent diseases and complex traits (average N=320K) to evaluate each annotation’s informativeness for disease heritability conditional on a broad set of coding, conserved, regulatory and LD-related annotations from the baseline-LD model and other sources; as a secondary metric, we also evaluate the accuracy of models that incorporate deep learning annotations in predicting disease-associated or fine-mapped SNPs. We aggregated annotations across all tissues (resp. blood cell types or brain tissues) in meta-analyses across all 41 traits (resp. 11 blood-related traits or 8 brain-related traits). These allelic-effect annotations were highly enriched for disease heritability, but produced only limited conditionally significant results – only Basenji-H3K4me3 in meta-analyses across all 41 traits and brain-specific Basenji-H3K4me3 in meta-analyses across 8 brain-related traits. We conclude that deep learning models are yet to achieve their full potential to provide considerable amount of unique information for complex disease, and that the informativeness of deep learning models for disease beyond established functional annotations cannot be inferred from metrics based on their accuracy in predicting regulatory annotations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kushal K. Dey ◽  
Bryce van de Geijn ◽  
Samuel Sungil Kim ◽  
Farhad Hormozdiari ◽  
David R. Kelley ◽  
...  

Abstract Deep learning models have shown great promise in predicting regulatory effects from DNA sequence, but their informativeness for human complex diseases is not fully understood. Here, we evaluate genome-wide SNP annotations from two previous deep learning models, DeepSEA and Basenji, by applying stratified LD score regression to 41 diseases and traits (average N = 320K), conditioning on a broad set of coding, conserved and regulatory annotations. We aggregated annotations across all (respectively blood or brain) tissues/cell-types in meta-analyses across all (respectively 11 blood or 8 brain) traits. The annotations were highly enriched for disease heritability, but produced only limited conditionally significant results: non-tissue-specific and brain-specific Basenji-H3K4me3 for all traits and brain traits respectively. We conclude that deep learning models have yet to achieve their full potential to provide considerable unique information for complex disease, and that their conditional informativeness for disease cannot be inferred from their accuracy in predicting regulatory annotations.


2020 ◽  
Vol 27 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Cheng Shi ◽  
Jiaxing Chen ◽  
Xinyue Kang ◽  
Guiling Zhao ◽  
Xingzhen Lao ◽  
...  

: Protein-related interaction prediction is critical to understanding life processes, biological functions, and mechanisms of drug action. Experimental methods used to determine proteinrelated interactions have always been costly and inefficient. In recent years, advances in biological and medical technology have provided us with explosive biological and physiological data, and deep learning-based algorithms have shown great promise in extracting features and learning patterns from complex data. At present, deep learning in protein research has emerged. In this review, we provide an introductory overview of the deep neural network theory and its unique properties. Mainly focused on the application of this technology in protein-related interactions prediction over the past five years, including protein-protein interactions prediction, protein-RNA\DNA, Protein– drug interactions prediction, and others. Finally, we discuss some of the challenges that deep learning currently faces.


2021 ◽  
Vol 13 (8) ◽  
pp. 1602
Author(s):  
Qiaoqiao Sun ◽  
Xuefeng Liu ◽  
Salah Bourennane

Deep learning models have strong abilities in learning features and they have been successfully applied in hyperspectral images (HSIs). However, the training of most deep learning models requires labeled samples and the collection of labeled samples are labor-consuming in HSI. In addition, single-level features from a single layer are usually considered, which may result in the loss of some important information. Using multiple networks to obtain multi-level features is a solution, but at the cost of longer training time and computational complexity. To solve these problems, a novel unsupervised multi-level feature extraction framework that is based on a three dimensional convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE is stacked by fully 3D convolutional layers and 3D deconvolutional layers, which allows for the spectral-spatial information of targets to be mined simultaneously. Besides, the 3D-CAE can be trained in an unsupervised way without involving labeled samples. Moreover, the multi-level features are directly obtained from the encoded layers with different scales and resolutions, which is more efficient than using multiple networks to get them. The effectiveness of the proposed multi-level features is verified on two hyperspectral data sets. The results demonstrate that the proposed method has great promise in unsupervised feature learning and can help us to further improve the hyperspectral classification when compared with single-level features.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2021 ◽  
Author(s):  
Brendon R Lutnick ◽  
David Manthey ◽  
Jan U Becker ◽  
Brandon Ginley ◽  
Katharina Moos ◽  
...  

Image-based machine learning tools hold great promise for clinical applications in nephropathology and kidney research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often face prohibitive challenges in using these tools to their full potential, including the lack of technical expertise, suboptimal user interface, and limited computation power. We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in murine models of aging, diabetic nephropathy, and HIV associated nephropathy. The ability to access this tool over the internet will facilitate widespread use by computational non-experts. Histo-Cloud is open source and adaptable for segmentation of any histological structure regardless of stain. Histo-Cloud will greatly accelerate and facilitate the generation of datasets for machine learning in the analysis of kidney histology, empowering computationally novice end-users to conduct deep feature analysis of tissue slides.


2014 ◽  
Vol 29 (02) ◽  
pp. 1530002 ◽  
Author(s):  
Thomas C. T. Michaels ◽  
Tuomas P. J. Knowles

Filamentous protein structures are of high relevance for the normal functioning of the cell, where they provide the structural component for the cytoskeleton, but are also implicated in the pathogenesis of many disease states. The self-assembly of these supra-molecular structures from monomeric proteins has been studied extensively in the past 50 years and much interest has focused on elucidating the microscopic events that drive linear growth phenomena in a biological setting. Master equations have proven to be particularly fruitful in this context, allowing specific assembly mechanisms to be linked directly to experimental observations of filamentous growth. Recently, these approaches have increasingly been applied to aberrant protein polymerization, elucidating potential implications for controlling or combating the formation of pathological filamentous structures. This article reviews recent theoretical advances in the field of filamentous growth phenomena through the use of the master-equation formalism. We use perturbation and self-consistent methods for obtaining analytical solutions to the rate equations describing fibrillar growth and show how the resulting closed-form expressions can be used to shed light on the general physical laws underlying this complex phenomenon. We also present a connection between the underlying ideas of the self-consistent analysis of filamentous growth and the perturbative renormalization group.


2021 ◽  
Vol 23 (09) ◽  
pp. 981-993
Author(s):  
T. Balamurugan ◽  
◽  
E. Gnanamanoharan ◽  

Brain tumor segmentation is a challenging task in the medical diagnosis. The primary aim of brain tumor segmentation is to produce precise characterizations of brain tumor areas using adequately placed masks. Deep learning techniques have shown great promise in recent years for solving various computer vision problems such as object detection, image classification, and semantic segmentation. Numerous deep learning-based approaches have been implemented to achieve excellent system performance in brain tumor segmentation. This article aims to comprehensively study the recently developed brain tumor segmentation technology based on deep learning in light of the most advanced technology and its performance. A genetic algorithm based on fuzzy C-means (FCM-GA) was used in this study to segment tumor regions from brain images. The input image is scaled to 256×256 during the preprocessing stage. FCM-GA segmented a preprocessed MRI image. This is a versatile advanced machine learning (ML) technique for locating objects in large datasets. The segmented image is then subjected to hybrid feature extraction (HFE) to improve the feature subset. To obtain the best feature value, Kernel Nearest Neighbor with a genetic algorithm (KNN-GA) is used in the feature selection process. The best feature value is fed into the RESNET classifier, which divides the MRI image into meningioma, glioma, and pituitary gland regions. Real-time data sets are used to validate the performance of the proposed hybrid method. The proposed method improves average classification accuracy by 7.99 % to existing Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) classification algorithms


Sign in / Sign up

Export Citation Format

Share Document