scholarly journals Role of cell polarity dynamics and motility in pattern formation due to contact-dependent signalling

2021 ◽  
Vol 18 (175) ◽  
pp. 20200825
Author(s):  
Supriya Bajpai ◽  
Ranganathan Prabhakar ◽  
Raghunath Chelakkot ◽  
Mandar M. Inamdar

A key challenge in biology is to understand how spatio-temporal patterns and structures arise during the development of an organism. An initial aggregate of spatially uniform cells develops and forms the differentiated structures of a fully developed organism. On the one hand, contact-dependent cell–cell signalling is responsible for generating a large number of complex, self-organized, spatial patterns in the distribution of the signalling molecules. On the other hand, the motility of cells coupled with their polarity can independently lead to collective motion patterns that depend on mechanical parameters influencing tissue deformation, such as cellular elasticity, cell–cell adhesion and active forces generated by actin and myosin dynamics. Although modelling efforts have, thus far, treated cell motility and cell–cell signalling separately, experiments in recent years suggest that these processes could be tightly coupled. Hence, in this paper, we study how the dynamics of cell polarity and migration influence the spatiotemporal patterning of signalling molecules. Such signalling interactions can occur only between cells that are in physical contact, either directly at the junctions of adjacent cells or through cellular protrusional contacts. We present a vertex model which accounts for contact-dependent signalling between adjacent cells and between non-adjacent neighbours through long protrusional contacts that occur along the orientation of cell polarization. We observe a rich variety of spatiotemporal patterns of signalling molecules that is influenced by polarity dynamics of the cells, relative strengths of adjacent and non-adjacent signalling interactions, range of polarized interaction, signalling activation threshold, relative time scales of signalling and polarity orientation, and cell motility. Though our results are developed in the context of Delta–Notch signalling, they are sufficiently general and can be extended to other contact dependent morpho-mechanical dynamics.

2020 ◽  
Author(s):  
Supriya Bajpai ◽  
Ranganathan Prabhakar ◽  
Raghunath Chelakkot ◽  
Mandar M. Inamdar

A key challenge in biology is to understand how spatiotemporal patterns and structures arise during the development of an organism. An initial aggregate of spatially uniform cells develops and forms the differentiated structures of a fully developed organism. On the one hand, contact-dependent cell-cell signalling is responsible for generating a large number of complex, self-organized, spatial patterns in the distribution of the signalling molecules. On the other hand, the motility of cells coupled with their polarity can independently lead to collective motion patterns that depend on mechanical parameters influencing tissue deformation, such as cellular elasticity, cell-cell adhesion and active forces generated by actin and myosin dynamics. Although modelling efforts have, thus far, treated cell motility and cell-cell signalling separately, experiments in recent years suggest that these processes could be tightly coupled. Hence, in this paper, we study how the dynamics of cell polarity and migration influence the spatiotemporal patterning of signalling molecules. Such signalling interactions can occur only between cells that are in physical contact, either directly at the junctions of adjacent cells or through cellular protrusional contacts. We present a vertex model which accounts for contact-dependent signalling between adjacent cells and between non-adjacent neighbours through long protrusional contacts that occur along the orientation of cell polarization. We observe a rich variety of spatiotemporal patterns of signalling molecules that is influenced by polarity dynamics of the cells, relative strengths of adjacent and non-adjacent signalling interactions, range of polarized interaction, signalling activation threshold, relative time scales of signalling and polarity orientation, and cell motility. Though our results are developed in the context of Delta-Notch signalling, they are sufficiently general and can be extended to other contact dependent morpho-mechanical dynamics.


2009 ◽  
Vol 185 (5) ◽  
pp. 779-786 ◽  
Author(s):  
Isabelle Dupin ◽  
Emeline Camand ◽  
Sandrine Etienne-Manneville

Control of cell polarity is crucial during tissue morphogenesis and renewal, and depends on spatial cues provided by the extracellular environment. Using micropatterned substrates to impose reproducible cell–cell interactions, we show that in the absence of other polarizing cues, cell–cell contacts are the main regulator of nucleus and centrosome positioning, and intracellular polarized organization. In a variety of cell types, including astrocytes, epithelial cells, and endothelial cells, calcium-dependent cadherin-mediated cell–cell interactions induce nucleus and centrosome off-centering toward cell–cell contacts, and promote orientation of the nucleus–centrosome axis toward free cell edges. Nucleus and centrosome off-centering is controlled by N-cadherin through the regulation of cell interactions with the extracellular matrix, whereas the orientation of the nucleus–centrosome axis is determined by the geometry of N-cadherin–mediated contacts. Our results demonstrate that in addition to the specific function of E-cadherin in regulating baso-apical epithelial polarity, classical cadherins control cell polarization in otherwise nonpolarized cells.


2016 ◽  
Vol 212 (2) ◽  
pp. 199-217 ◽  
Author(s):  
Cédric Plutoni ◽  
Elsa Bazellieres ◽  
Maïlys Le Borgne-Rochet ◽  
Franck Comunale ◽  
Agusti Brugues ◽  
...  

Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.


1998 ◽  
Vol 141 (3) ◽  
pp. 791-804 ◽  
Author(s):  
María Yáñez-Mó ◽  
Arántzazu Alfranca ◽  
Carlos Cabañas ◽  
Mónica Marazuela ◽  
Reyes Tejedor ◽  
...  

Cell-to-cell junction structures play a key role in cell growth rate control and cell polarization. In endothelial cells (EC), these structures are also involved in regulation of vascular permeability and leukocyte extravasation. To identify novel components in EC intercellular junctions, mAbs against these cells were produced and selected using a morphological screening by immunofluorescence microscopy. Two novel mAbs, LIA1/1 and VJ1/16, specifically recognized a 25-kD protein that was selectively localized at cell–cell junctions of EC, both in the primary formation of cell monolayers and when EC reorganized in the process of wound healing. This antigen corresponded to the recently cloned platelet-endothelial tetraspan antigen CD151/PETA-3 (platelet-endothelial tetraspan antigen-3), and was consistently detected at EC cell–cell contact sites. In addition to CD151/PETA-3, two other members of the tetraspan superfamily, CD9 and CD81/ TAPA-1 (target of antiproliferative antibody-1), localized at endothelial cell-to-cell junctions. Biochemical analysis demonstrated molecular associations among tetraspan molecules themselves and those of CD151/ PETA-3 and CD9 with α3β1 integrin. Interestingly, mAbs directed to both CD151/PETA-3 and CD81/ TAPA-1 as well as mAb specific for α3 integrin, were able to inhibit the migration of ECs in the process of wound healing. The engagement of CD151/PETA-3 and CD81/TAPA-1 inhibited the movement of individual ECs, as determined by quantitative time-lapse video microscopy studies. Furthermore, mAbs against the CD151/PETA-3 molecule diminished the rate of EC invasion into collagen gels. In addition, these mAbs were able to increase the adhesion of EC to extracellular matrix proteins. Together these results indicate that CD81/TAPA-1 and CD151/PETA-3 tetraspan molecules are components of the endothelial lateral junctions implicated in the regulation of cell motility, either directly or by modulation of the function of the associated integrin heterodimers.


2007 ◽  
Vol 35 (1) ◽  
pp. 156-160 ◽  
Author(s):  
G.C. Ingram

The process of L1 specification early in plant embryogenesis, and subsequent maintenance and elaboration of epidermal organization, are fundamental to plant growth and fitness. To occur in a co-ordinated fashion, these processes require considerable cell–cell cross-talk. It is perhaps then unsurprising that several classes of plant RLKs (receptor-like kinases), as well as other membrane-localized signalling components, have been implicated both in epidermal specification and in patterning events governing the distribution of epidermal cell types. However, despite our growing knowledge of the roles of these signalling molecules, remarkably little is understood regarding their function at the cellular level. In particular the potential role of regulated proteolytic cleavage in controlling the activity of signalling molecules at the plant plasma membrane has remained largely unaddressed despite its massive importance in signalling in animal systems. Because of the relative physical accessibility of their expression domains, molecules involved in epidermal development present opportunities for investigating mechanisms of cell–cell signalling in planta. Advances in understanding the potential regulatory processing of membrane-localized signalling molecules during epidermal development will be examined using parallels with animal systems to highlight potential future directions for this field of research.


2003 ◽  
Vol 4 (10) ◽  
pp. 814-819 ◽  
Author(s):  
Alain Prochiantz ◽  
Alain Joliot

2010 ◽  
Vol 108 (5) ◽  
pp. 1509-1522 ◽  
Author(s):  
A.H. Rickard ◽  
K.R. Colacino ◽  
K.M. Manton ◽  
R.I. Morton ◽  
E. Pulcini ◽  
...  

2009 ◽  
Vol 20 (13) ◽  
pp. 3033-3043 ◽  
Author(s):  
Ernest Ho ◽  
Tames Irvine ◽  
Gregory J.A. Vilk ◽  
Gilles Lajoie ◽  
Kodi S. Ravichandran ◽  
...  

Cell polarization is a key prerequisite for directed migration during development, tissue regeneration, and metastasis. Integrin-linked kinase (ILK) is a scaffold protein essential for cell polarization, but very little is known about the precise mechanisms whereby ILK modulates polarization in normal epithelia. Elucidating these mechanisms is essential to understand tissue morphogenesis, transformation, and repair. Here we identify a novel ILK protein complex that includes Engulfment and Cell Motility 2 (ELMO2). We also demonstrate the presence of RhoG in ILK–ELMO2 complexes, and the localization of this multiprotein species specifically to the leading lamellipodia of polarized cells. Significantly, the ability of RhoG to bind ELMO is crucial for ILK induction of cell polarization, and the joint expression of ILK and ELMO2 synergistically promotes the induction of front-rear polarity and haptotactic migration. This places RhoG–ELMO2–ILK complexes in a key position for the development of cell polarity and forward movement. Although ILK is a component of many diverse multiprotein species that may contribute to cell polarization, expression of dominant-negative ELMO2 mutants is sufficient to abolish the ability of ILK to promote cell polarization. Thus, its interaction with ELMO2 and RhoG is essential for the ability of ILK to induce front-rear cell polarity.


2016 ◽  
Vol 12 (2) ◽  
pp. 345-349 ◽  
Author(s):  
Samuel Juillot ◽  
Hannes M. Beyer ◽  
Josef Madl ◽  
Wilfried Weber ◽  
Matias D. Zurbriggen ◽  
...  

One major regulatory mechanism in cell signalling is the spatio-temporal control of the localization of signalling molecules. We synthetically designed an entire cell signalling pathway, which allows controlling the transport of signalling molecules from the plasma membrane to the nucleus, by using light and small molecules.


2015 ◽  
Vol 57 ◽  
pp. 189-201 ◽  
Author(s):  
Jay Shankar ◽  
Cecile Boscher ◽  
Ivan R. Nabi

Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.


Sign in / Sign up

Export Citation Format

Share Document