scholarly journals The chinchilla as a novel animal model of pregnancy

2017 ◽  
Vol 4 (4) ◽  
pp. 161098 ◽  
Author(s):  
Emmeli Mikkelsen ◽  
Henrik Lauridsen ◽  
Per Mose Nielsen ◽  
Haiyun Qi ◽  
Thomas Nørlinger ◽  
...  

Several parameters are important when choosing the most appropriate animal to model human obstetrics, including gestation period, number of fetuses per gestation and placental structure. The domesticated long-tailed chinchilla ( Chinchilla lanigera ) is a well-suited and appropriate animal model of pregnancy that often will carry only one offspring and has a long gestation period of 105–115 days. Furthermore, the chinchilla placenta is of the haemomonochorial labyrinthine type and is therefore comparable to the human villous haemomonochorial placenta. This proof-of-concept study demonstrated the feasibility in laboratory settings, and demonstrated the potential of the pregnant chinchilla as an animal model for obstetric research and its potential usefulness for non-invasive measurements in the placenta. We demonstrate measurements of the placental and fetal metabolism (demonstrated in vivo by hyperpolarized MRI and in vitro by qPCR analyses), placental vessels (demonstrated ex vivo by contrast-enhanced CT angiography) and overall anatomy (demonstrated in vivo by whole-body CT).

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2019 ◽  
Vol 47 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Camilla Christensen ◽  
Lotte K. Kristensen ◽  
Maria Z. Alfsen ◽  
Carsten H. Nielsen ◽  
Andreas Kjaer

Abstract Purpose Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. Methods Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with 89Zr (89Zr-DFO-6E11). 89Zr-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of 89Zr-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of 89Zr-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. Results 89Zr-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by 89Zr-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. 89Zr-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. 89Zr-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum 89Zr-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). Conclusion PET imaging with 89Zr-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and 89Zr-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.


2006 ◽  
Vol 291 (3) ◽  
pp. L466-L472 ◽  
Author(s):  
Martin Witzenrath ◽  
Birgit Ahrens ◽  
Stefanie M. Kube ◽  
Armin Braun ◽  
Heinz G. Hoymann ◽  
...  

Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause ( Penh). Twenty-four hours after each Penh measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after Penh measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the β2-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.


2019 ◽  
Author(s):  
Mary T. Doan ◽  
Michael D. Neinast ◽  
Erika L Varner ◽  
Kenneth Bedi ◽  
David Bartee ◽  
...  

AbstractAnabolic metabolism of carbon in mammals is mediated via the one and two carbon carriers S-adenosyl methionine and acetyl-coenzyme A (acetyl-CoA). In contrast, anabolic metabolism using three carbon units via propionate is not thought to occur. Mammals are primarily thought to oxidize the 3-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. We found that this may not be absolute and that in mammals one non-oxidative fate of two units of propionyl-CoA is to condense to a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this pathway using purified protein extracts provided limited substrates and confirmed the product with a synthetic standard. In whole-body in vivo stable isotope tracing with infusion of 13C-labeled valine achieving steady state, 2M2PE-CoA formed via propionyl-CoA in multiple murine tissues including heart, kidney, and to a lesser degree in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three to six carbon reaction conserved in humans and mice that utilizes three carbons via propionate.Highlights- Synthesis and confirmation of structure 2-methyl-2-pentenoyl-CoA- In vivo fate of valine across organs includes formation of a 6-carbon metabolite from propionyl-CoA- Ex vivo metabolism of propionate in the human heart includes direct anabolism to a 6-carbon product- In both cases, this reaction occurred at physiologically relevant concentrations of propionate and valine- In vitro this pathway requires propionyl-CoA and NADH/NADPH as substrates


2020 ◽  
Author(s):  
Fabian C. Herbert ◽  
Olivia Brohlin ◽  
Tyler Galbraith ◽  
Candace Benjamin ◽  
Cesar A. Reyes ◽  
...  

<div> <div> <div> <p>Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and </p> </div> </div> <div> <div> <p>kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents. </p> </div> </div> </div>


Author(s):  
Barbara Cisterna ◽  
Federico Boschi ◽  
Anna Cleta Croce ◽  
Rachele Podda ◽  
Serena Zanzoni ◽  
...  

Optical Imaging (OI) is an emerging field developed in recent years which can be a very versatile, fast and non-invasive approach for the acquisition of images of  small (few centimetres) sized samples, such as layers of cells (in vitro), small animals (in vivo), animal organs (ex vivo) and innovative materials. OI was primarily developed for biomedical applications to study the progression of some pathologies and to assess the efficacy of new pharmaceutical compounds. Here we applied the OI technique to a completely new field: the study of food optical properties. In this case we exploited the optical properties of endogenous molecules, which are generally considered responsible of a background noise affecting the investigation. Here we used this sort of “noise”, named autofluorescence, to obtain information on the drying of Corvinone grapes employed for Amarone wine production. OI can provide interesting information and, inserted in a multimodal approach, it may be a real support to other techniques in the description of a biological phenomenon.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16719-e16719
Author(s):  
Fabian Kuetting ◽  
Alois Martin Sprinkart ◽  
Anton Faron ◽  
Lisa Meffert ◽  
Christian Jansen ◽  
...  

e16719 Background: Non-invasive identification of malignant ascites is a challenge in clinical practice.Thus, we decided to assess if an MR-based T1 mapping approach allows non-invasive differentiation of malignant and non-malignant effusions. Methods: In-vitro and ex-vivo MR-examinations were performed on a clinical 1.5T MR-system. T1 mapping was performed with spectroscopy and an adapted modified Look-Locker inversion-recovery (MOLLI) acquisition. For in-vitro experiments 13 titrated solutions with varying albumin content (0 to 200 g/l) were examined. For ex-vivo evaluation 27 ascites/pleural effusion samples from patients with malignancy (19 with histologic tumor confirmation in effusion) and 18 samples from patients without malignancy were examined. All samples underwent histological and laboratory testing. Samples were classified as malignant-positive histology, malignant-negative histology and non-malignant negative histology. Lab values were correlated with T1 maps and receiver operating characteristic (ROC) analysis was used to determine the optimal T1-value threshold to differentiate malignant and non-malignant ascites. Results: In in-vitro analysis both methods showed a high correlation with albumin-content (MOLLI: r = -0.97; Spectroscopy: -0.98). T1-values derived from the reference standard (Spectroscopy) and the MOLLI technique had a high agreement (intraclass correlation single measures: 0,9889, 95% CI: 0,52 to 0,99; average measures: 9,994, 95% CI 0,69 to 0,99). Bland-Altman analysis showed a strong agreement between both methods: 62.5 ± 35 (95% CI: 41.2 to 83.8) Ex-vivo analysis revealed significant differences between T1 values from patients with malignant+ histology (median: 2237; IQR: 2132 to 2327.5) and patients with non malignant- negative histology (median: 2611; IQR: 2548 to 2803, p < 0.0001) as well as between malignant+ histology and all other included patients (median: 2585; IQR: 2503 to 2710, p < 0.0001) Multiple regression analysis of in-vivo results revealed that only albumin content correlated with MOLLI based T1 measurements (p < 0.0001; r = -0.65) ROC analysis for differentiation between malignant and non-malignant effusions (malignant+ histology vs. all other) showed an AUC of 0.897; 95% CI: 0.769 to 0.967). Malignant+ histology vs. non-malignant- histology showed an AUC of 1.000 (cut off Lolli > 2419; 95% CI: 0.905 to 1). Conclusions: T1 Mapping shows excellent correlation with protein content of fluids.MR- T1 mapping allows for non-invasive differentiation of malignant and non-malignant effusions in an ex-vivo set up.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Daniel B. Roquini ◽  
Ramon M. Cogo ◽  
Ana C. Mengarda ◽  
Susana F. Mazloum ◽  
Cristiane S. Morais ◽  
...  

ABSTRACT The treatment and control of schistosomiasis, a neglected disease that affects more than 200 million people worldwide, rely on the use of a single drug, praziquantel. A vaccine has yet to be developed, and since new drug design and development is a lengthy and costly process, drug repurposing is a promising strategy. In this study, the efficacy of promethazine, a first-generation antihistamine, was evaluated against Schistosoma mansoni ex vivo and in a murine model of schistosomiasis. In vitro assays demonstrated that promethazine affected parasite motility and viability, and it induced severe tegumental damage in schistosomes. The 50% lethal concentration (LC50) of the drug was 5.84 μM. Similar to promethazine, schistosomes incubated with atropine, a classical anticholinergic drug, displayed reduced motor activity. In an animal model, promethazine treatment was introduced at an oral dose of 100 mg/kg of body weight for five successive days at different intervals from the time of infection for the evaluation of the stage-specific susceptibility (prepatent and patent infections). Various parasitological criteria indicated the following in vivo antischistosomal effects of promethazine: there were significant reductions in worm burden, egg production, hepatomegaly, and splenomegaly. The highest worm burden reduction was achieved with promethazine in patent infections (>90%). Taken together, considering the importance of the repositioning of drugs in infectious diseases, especially those related to poverty, our data revealed the possibility of promethazine repositioning as an antischistosomal agent.


2019 ◽  
Vol 316 (3) ◽  
pp. L498-L505 ◽  
Author(s):  
Chiara Autilio ◽  
Shivani Shankar-Aguilera ◽  
Angelo Minucci ◽  
Lhoussaine Touqui ◽  
Daniele De Luca

Hypothermia can modify surfactant composition and function. Secretory phospholipase A2 (sPLA2) hydrolyses surfactant phospholipids and is important in the pathobiology of several critical respiratory disorders. We hypothesize that sPLA2 activity might be influenced by the temperature partially explaining surfactant changes. This study aims to evaluate comprehensively the effect of hypothermia on sPLA2 activity. We measured sPLA2 activity at different temperatures, alone or combined with bile acids, in vitro (incubating human recombinant sPLA2-IIA and porcine sPLA2-IB), ex vivo (by cooling bronchoalveolar lavage samples from neonates with respiratory distress syndrome or no lung disease), and in vivo (using lavage samples obtained before and after 72 h of whole body cooling in neonates with hypoxic-ischemic encephalopathy). We also measured concentrations of various sPLA2 subtypes and natural sPLA2 inhibitors in in vivo cooled samples. Results were corrected for protein content and dilution. In vitro cooling did not show any effect of hypothermia on sPLA2. Ex vivo cooling did not alter total sPLA2 activity, and the addition of bile acids increased sPLA2 activity irrespective of the temperature and the type of sampled patient. In vivo hypothermia reduced median sPLA2 activity from 16.6 [15.2–106.7] IU/mg to 3.3 [2.7–8.5] IU/mg ( P = 0.026) and mean sPLA2-IIA from 1.1 (0.8) pg/μg to 0.6 (0.4) pg/μg ( P = 0.047), whereas dioleylphosphatidylglycerol increased from 8.3 (3.9)% to 12.8 (5.1)% ( P = 0.02). Whole body hypothermia decreases in vivo global sPLA2 activity in bronchoalveolar lavage fluids through the reduction of sPLA2-IIA and increment of dioleylphosphatidylglycerol. This effect is absent during in vitro or ex vivo hypothermia.


Sign in / Sign up

Export Citation Format

Share Document