scholarly journals Direct anabolic three carbon metabolism via propionate to a six carbon metabolite occurs in human heart and in vivo across mouse tissues

2019 ◽  
Author(s):  
Mary T. Doan ◽  
Michael D. Neinast ◽  
Erika L Varner ◽  
Kenneth Bedi ◽  
David Bartee ◽  
...  

AbstractAnabolic metabolism of carbon in mammals is mediated via the one and two carbon carriers S-adenosyl methionine and acetyl-coenzyme A (acetyl-CoA). In contrast, anabolic metabolism using three carbon units via propionate is not thought to occur. Mammals are primarily thought to oxidize the 3-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. We found that this may not be absolute and that in mammals one non-oxidative fate of two units of propionyl-CoA is to condense to a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this pathway using purified protein extracts provided limited substrates and confirmed the product with a synthetic standard. In whole-body in vivo stable isotope tracing with infusion of 13C-labeled valine achieving steady state, 2M2PE-CoA formed via propionyl-CoA in multiple murine tissues including heart, kidney, and to a lesser degree in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three to six carbon reaction conserved in humans and mice that utilizes three carbons via propionate.Highlights- Synthesis and confirmation of structure 2-methyl-2-pentenoyl-CoA- In vivo fate of valine across organs includes formation of a 6-carbon metabolite from propionyl-CoA- Ex vivo metabolism of propionate in the human heart includes direct anabolism to a 6-carbon product- In both cases, this reaction occurred at physiologically relevant concentrations of propionate and valine- In vitro this pathway requires propionyl-CoA and NADH/NADPH as substrates

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesca-Maria Raffaelli ◽  
Julia Resch ◽  
Rebecca Oelkrug ◽  
K. Alexander Iwen ◽  
Jens Mittag

AbstractBrown adipose tissue (BAT) thermogenesis is considered a potential target for treatment of obesity and diabetes. In vitro data suggest dopamine receptor signaling as a promising approach; however, the biological relevance of dopamine receptors in the direct activation of BAT thermogenesis in vivo remains unclear. We investigated BAT thermogenesis in vivo in mice using peripheral administration of D1-agonist SKF38393 or D2-agonist Sumanirole, infrared thermography, and in-depth molecular analyses of potential target tissues; and ex vivo in BAT explants to identify direct effects on key thermogenic markers. Acute in vivo treatment with the D1- or D2-agonist caused a short spike or brief decrease in BAT temperature, respectively. However, repeated daily administration did not induce lasting effects on BAT thermogenesis. Likewise, neither agonist directly affected Ucp1 or Dio2 mRNA expression in BAT explants. Taken together, the investigated agonists do not seem to exert lasting and physiologically relevant effects on BAT thermogenesis after peripheral administration, demonstrating that D1- and D2-receptors in iBAT are unlikely to constitute targets for obesity treatment via BAT activation.


2006 ◽  
Vol 291 (3) ◽  
pp. L466-L472 ◽  
Author(s):  
Martin Witzenrath ◽  
Birgit Ahrens ◽  
Stefanie M. Kube ◽  
Armin Braun ◽  
Heinz G. Hoymann ◽  
...  

Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause ( Penh). Twenty-four hours after each Penh measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after Penh measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the β2-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.


2021 ◽  
Vol 48 (4) ◽  
pp. 440-447
Author(s):  
Kento Takaya ◽  
Naruhito Matsuda ◽  
Toru Asou ◽  
Kazuo Kishi

Background Brown adipose tissue (BAT) is a potential target for anti-obesity treatments. Previous studies have shown that BAT activation causes an acute metabolic boost and reduces adiposity. Furthermore, BAT and BAT-derived cell transplantation reportedly help treat obesity by regulating glucose and fatty acid metabolism. However, since BAT transplantation leads to whole-body weight loss, we speculated that earlier approaches cause a generalized and unnecessary fat tissue loss, including in breast and hip tissues.Methods We transplanted white adipose tissue-derived or BAT-derived preadipocytes prepared from C57BL/6 mice into one side of the inguinal fat pads of an obese mouse model (db/ db mice) to examine whether it would cause fat loss at the peri-transplant site (n=5 each). The same volume of phosphate-buffered saline was injected as a control on the other side. Six weeks after transplantation, the inguinal fat pad was excised and weighed. We also measured the concentrations of glucose, triglycerides, fatty acids, and total cholesterol in the peripheral blood.Results BAT-derived preadipocytes showed abundant mitochondria and high levels of mitochondrial membrane uncoupling protein 1 expression, both in vivo and in vitro, with a remarkable reduction in weight of the inguinal fat pad after transplantation (0.17±0.12 g, P=0.043). Only free fatty acid levels tended to decrease in the BAT-transplanted group, but the difference was not significant (P=0.11).Conclusions Our results suggest that brown adipocytes drive fat degradation around the transplantation site. Thus, local transplantation of BAT-derived preadipocytes may be useful for treating obesity, as well as in cosmetic treatments.


2019 ◽  
Vol 316 (3) ◽  
pp. L498-L505 ◽  
Author(s):  
Chiara Autilio ◽  
Shivani Shankar-Aguilera ◽  
Angelo Minucci ◽  
Lhoussaine Touqui ◽  
Daniele De Luca

Hypothermia can modify surfactant composition and function. Secretory phospholipase A2 (sPLA2) hydrolyses surfactant phospholipids and is important in the pathobiology of several critical respiratory disorders. We hypothesize that sPLA2 activity might be influenced by the temperature partially explaining surfactant changes. This study aims to evaluate comprehensively the effect of hypothermia on sPLA2 activity. We measured sPLA2 activity at different temperatures, alone or combined with bile acids, in vitro (incubating human recombinant sPLA2-IIA and porcine sPLA2-IB), ex vivo (by cooling bronchoalveolar lavage samples from neonates with respiratory distress syndrome or no lung disease), and in vivo (using lavage samples obtained before and after 72 h of whole body cooling in neonates with hypoxic-ischemic encephalopathy). We also measured concentrations of various sPLA2 subtypes and natural sPLA2 inhibitors in in vivo cooled samples. Results were corrected for protein content and dilution. In vitro cooling did not show any effect of hypothermia on sPLA2. Ex vivo cooling did not alter total sPLA2 activity, and the addition of bile acids increased sPLA2 activity irrespective of the temperature and the type of sampled patient. In vivo hypothermia reduced median sPLA2 activity from 16.6 [15.2–106.7] IU/mg to 3.3 [2.7–8.5] IU/mg ( P = 0.026) and mean sPLA2-IIA from 1.1 (0.8) pg/μg to 0.6 (0.4) pg/μg ( P = 0.047), whereas dioleylphosphatidylglycerol increased from 8.3 (3.9)% to 12.8 (5.1)% ( P = 0.02). Whole body hypothermia decreases in vivo global sPLA2 activity in bronchoalveolar lavage fluids through the reduction of sPLA2-IIA and increment of dioleylphosphatidylglycerol. This effect is absent during in vitro or ex vivo hypothermia.


2020 ◽  
Author(s):  
Anthony R. Angueira ◽  
Alexander P. Sakers ◽  
Lan Cheng ◽  
Rojesh Shrestha ◽  
Chihiro Okada ◽  
...  

SummaryBrown adipose tissue can expend large amounts of energy and thus increasing its amount or activity is a promising therapeutic approach to combat metabolic disease. In humans, major deposits of brown fat cells are found intimately associated with large blood vessels, corresponding to perivascular adipose tissue (PVAT). However, the cellular origins of PVAT are poorly understood. Here, we applied single cell transcriptomic analyses, ex vivo adipogenesis assays, and genetic fate mapping in vivo to determine the identity of perivascular adipocyte progenitors. We found that thoracic PVAT initially develops from a fibroblastic lineage, comprising progenitor cells (Pdgfra+;Ly6a+;Pparg−) and preadipocytes (Pdgfra+;Ly6a−;Pparg+). Progenitors and preadipocytes in PVAT shared transcriptional similarity with analogous cell types in white adipose tissue, pointing towards a conserved adipose cell lineage hierarchy. Interestingly, the aortic adventitia of adult animals contained a novel population of adipogenic smooth muscle cells (Myh11+; Pdgfra−; Pparg+) possessing the capacity to generate adipocytes in vitro and in vivo. Taken together, these studies define distinct populations of fibroblastic and smooth muscle progenitor cells for thermogenic PVAT, providing a crucial foundation for developing strategies to augment brown fat activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kwang-eun Kim ◽  
Isaac Park ◽  
Jeesoo Kim ◽  
Myeong-Gyun Kang ◽  
Won Gun Choi ◽  
...  

AbstractSecretory proteins are an essential component of interorgan communication networks that regulate animal physiology. Current approaches for identifying secretory proteins from specific cell and tissue types are largely limited to in vitro or ex vivo models which often fail to recapitulate in vivo biology. As such, there is mounting interest in developing in vivo analytical tools that can provide accurate information on the origin, identity, and spatiotemporal dynamics of secretory proteins. Here, we describe iSLET (in situ Secretory protein Labeling via ER-anchored TurboID) which selectively labels proteins that transit through the classical secretory pathway via catalytic actions of Sec61b-TurboID, a proximity labeling enzyme anchored in the ER lumen. To validate iSLET in a whole-body system, we express iSLET in the mouse liver and demonstrate efficient labeling of liver secretory proteins which could be tracked and identified within circulating blood plasma. Furthermore, proteomic analysis of the labeled liver secretome enriched from liver iSLET mouse plasma is highly consistent with previous reports of liver secretory protein profiles. Taken together, iSLET is a versatile and powerful tool for studying spatiotemporal dynamics of secretory proteins, a valuable class of biomarkers and therapeutic targets.


Author(s):  
Folly Patterson ◽  
Raheleh Miralami ◽  
Keith E. Tansey ◽  
Raj K. Prabhu ◽  
Lauren B. Priddy

2020 ◽  
Vol 21 (4) ◽  
pp. 1315 ◽  
Author(s):  
Shanshan Zhao ◽  
Dai Shi ◽  
Chen Su ◽  
Wen Jiang ◽  
Chao Zhang ◽  
...  

Non-invasively monitoring allogeneic graft rejection with a specific marker is of great importance for prognosis of patients. Recently, data revealed that IL-27Rα was up-regulated in alloreactive CD4+ T cells and participated in inflammatory diseases. Here, we evaluated whether IL-27Rα could be used in monitoring allogeneic graft rejection both in vitro and in vivo. Allogeneic (C57BL/6 donor to BALB/c recipient) and syngeneic (BALB/c both as donor and recipient) skin grafted mouse models were established. The expression of IL-27Rα in grafts was detected. The radio-probe, 125I-anti-IL-27Rα mAb, was prepared. Dynamic whole-body phosphor-autoradiography, ex vivo biodistribution and immunofluorescence staining were performed. The results showed that the highest expression of IL-27Rα was detected in allogeneic grafts on day 10 post transplantation (top period of allorejection). 125I-anti-IL-27Rα mAb was successfully prepared with higher specificity and affinity. Whole-body phosphor-autoradiography showed higher radioactivity accumulation in allogeneic grafts than syngeneic grafts on day 10. The uptake of 125I-anti-IL-27Rα mAb in allogeneic grafts could be almost totally blocked by pre-injection with excess unlabeled anti-IL-27Rα mAb. Interestingly, we found that 125I-anti-IL-27Rα mAb accumulated in allogeneic grafts, along with weaker inflammation earlier on day 6. The high uptake of 125I-anti-IL-27Rα mAb was correlated with the higher infiltrated IL-27Rα positive cells (CD3+/CD68+) in allogeneic grafts. In conclusion, IL-27Rα may be a novel molecular imaging marker to predict allorejection.


2017 ◽  
Vol 4 (4) ◽  
pp. 161098 ◽  
Author(s):  
Emmeli Mikkelsen ◽  
Henrik Lauridsen ◽  
Per Mose Nielsen ◽  
Haiyun Qi ◽  
Thomas Nørlinger ◽  
...  

Several parameters are important when choosing the most appropriate animal to model human obstetrics, including gestation period, number of fetuses per gestation and placental structure. The domesticated long-tailed chinchilla ( Chinchilla lanigera ) is a well-suited and appropriate animal model of pregnancy that often will carry only one offspring and has a long gestation period of 105–115 days. Furthermore, the chinchilla placenta is of the haemomonochorial labyrinthine type and is therefore comparable to the human villous haemomonochorial placenta. This proof-of-concept study demonstrated the feasibility in laboratory settings, and demonstrated the potential of the pregnant chinchilla as an animal model for obstetric research and its potential usefulness for non-invasive measurements in the placenta. We demonstrate measurements of the placental and fetal metabolism (demonstrated in vivo by hyperpolarized MRI and in vitro by qPCR analyses), placental vessels (demonstrated ex vivo by contrast-enhanced CT angiography) and overall anatomy (demonstrated in vivo by whole-body CT).


Sign in / Sign up

Export Citation Format

Share Document