scholarly journals Effects of azo dye on simultaneous biological removal of azo dye and nutrients in wastewater

2018 ◽  
Vol 5 (8) ◽  
pp. 180795 ◽  
Author(s):  
Aihui Chen ◽  
Bairen Yang ◽  
Yuanqiang Zhou ◽  
Yuze Sun ◽  
Cheng Ding

The potential disrupting effects of Azo dye on wastewater nutrients removal deserved more analysis. In this study, 15 days exposure experiments were conducted with alizarin yellow R (AYR) as a model dye to determine whether the dye caused adverse effects on biological removal of both the dye and nutrients in acclimated anaerobic–aerobic–anoxic sequencing batch reactors. The results showed that the AYR removal efficiency was, respectively, 85.7% and 66.8% at AYR concentrations of 50 and 200 mg l −1 , while higher AYR inlet (400 mg l −1 ) might inactivate sludge. Lower removal of AYR at 200 mg l −1 of AYR was due to the insufficient support of electron donors in the anaerobic process. However, the decolorized by-products p -phenylenediamine and 5-aminosalicylic were completely decomposed in the following aerobic stage at both 50 and 200 mg l −1 of AYR concentrations. Compared with the absence of AYR, the presence of 200 mg l −1 of AYR decreased the total nitrogen removal efficiency from 82.4 to 41.1%, and chemical oxygen demand (COD) removal efficiency initially decreased to 68.1% and then returned to around 83.4% in the long-term exposure time. It was also found that the inhibition of AYR, nitrogen and COD removal induced by a higher concentration of AYR was due to the increased intracellular reactive oxygen species production, which caused the rise of oxidation–reduction potential value and decreased ammonia monooxygenase and nitrite oxidoreductase activities.

2015 ◽  
Vol 17 (1) ◽  
pp. 210-219 ◽  

<div> <p>This study aims to investigate the removal of a reactive azo dye (Reactive Red 198) in anaerobic/aerobic sequencing batch reactors (SBR). The total volume of the SBR system used in the study was 10 l. Sludge age was selected as 15 days. The color removal efficiencies varied between 76 to 98% with initial color concentrations of about 20 and 50 mg l<sup>-1</sup>. The effluent color concentration changed between 0.4-6.0 mg l<sup>-1</sup>. The maximum dye removal efficiencies of the SBR system under 20 mg l<sup>-1</sup> dye concentration with 16/4 hours anaerobic/aerobic phases respectively were %98. The increase of anaerobic contact times had improved dye removal efficiency. The COD removal was also high during this period (81-94 %). The increase of organic loading rate from 500 to 1000 mg COD l<sup>-1</sup> day<sup>-1</sup> had improved the dye removal efficiency (from 88% to 96%) but deteriorated the COD removal efficiency to 81% from 88% in SBR systems.</p> </div> <p>&nbsp;</p>


2010 ◽  
Vol 61 (7) ◽  
pp. 1749-1756 ◽  
Author(s):  
B. Q. Liao ◽  
M. R. Zheng ◽  
L. Ratana-Rueangsri

A comparative study on the treatment of synthetic kraft evaporator condensate was conducted using thermophilic (55°C) and mesophilic (30°C) membrane aerated biofilm reactors (MABRs) and sequencing batch reactors (SBRs) for 8 months. Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 80–95% was achieved with both thermophilic and mesophilic MABRs and SBRs. The COD removal efficiency of thermophilic MABR (80–90%) was slightly lower than that of the mesophilic MABR (85–95%) and the thermophilic SBR (90–95%). A significant amount (13–37%) of COD was stripped by conventional aeration in the SBRs, while stripping in MABRs was negligible. Simultaneous COD removal and denitrification were observed in the mesophilic MABR, while the thermophilic MABR contributed mainly for COD removal. Nitrification was not significant in both the thermophilic and mesophilic MABRs. The results suggest that treatment of kraft evaporator condensate is feasible with the use of both thermophilic and mesophilic MABRs in terms of COD removal with the advantages of negligible stripping.


2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2013 ◽  
Vol 69 (8) ◽  
pp. 1612-1619 ◽  
Author(s):  
Paraschos Melidis ◽  
Anastasios G. Kapagiannidis ◽  
Spyridon Ntougias ◽  
Konstantina Davididou ◽  
Alexander Aivasidis

A novel enhanced biological phosphorus removal (EBPR) system, which combined the intermittent feeding design with an anaerobic selector, was examined using on-line oxidation reduction potential (ORP), nitrate and ammonium probes. Two experimental periods were investigated: the aerobic and anoxic phases were set at 40 and 20 minutes respectively for period I, and set at 30 and 30 minutes for period II. Chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and P removal were measured as high as 87%, 96% and 93% respectively, while total Kjeldahl nitrogen (TKN) and NH4+ removal averaged 85% and 91%. Two specific denitrification rates (SDNRs), which corresponded to the consumption of the readily biodegradable and slowly biodegradable COD, were determined. SDNR-1 and SDNR-2 during period I were 0.235 and 0.059 g N g−1 volatile suspended solids (VSS) d−1 respectively, while the respective rates during period II were 0.105 and 0.042 g N g−1 VSS d−1. The specific nitrate formation and ammonium oxidizing rates were 0.076 and 0.064 g N g−1 VSS d−1 for period I and 0.065 and 0.081 g N g−1 VSS d−1 for period II respectively. The specific P release rates were 2.79 and 4.02 mg P g−1 VSS h−1 during period I and II, while the respective anoxic/aerobic uptake rates were 0.42 and 0.55 mg P g−1 VSS h−1. This is the first report on an EBPR scheme using the intermittent feeding strategy.


2008 ◽  
Vol 57 (7) ◽  
pp. 1047-1052 ◽  
Author(s):  
U. Durán ◽  
O. Monroy ◽  
J. Gómez ◽  
F. Ramírez

The biological elimination of polymeric resins compounds (PRC) such as acrylic acid and their esters, vinyl acetate and styrene under methanogenic and oxygen-limited methanogenesis conditions was evaluated. Two UASB reactors (A and B) were used and the removal of the organic matter was studied in four stages. Reactor A was used as methanogenic control during the study. Initially both reactors were operated under methanogenic conditions. From the second stage reactor B was fed with 0.6 and 1 mg/L·d of oxygen (O2). Reactor A had diminution in chemical oxygen demand (COD) removal efficiency from 75±4% to 37±5%, by the increase of PRC loading rate from 750 to 1125 mg COD/L·d. In this reactor there was no styrene elimination. In reactor B the COD removal efficiency was between 73±5% and 80±2%, even with the addition of O2 and increase of the PRC loading rate, owing to oxygen being used in the partial oxidation of these compounds. In this reactor the yields were modified from 0.56 to 0.40 for CH4 and from 0.31 to 0.60 for CO2. The O2 in low concentrations increased 40.7% the consumption rates of acrylic acid, methyl acrylate and vinyl acetate, allowing styrene consumption with a rate of 0.103 g/L·d. Batch cultures demonstrated that under methanogenic and oxygen-limited methanogenesis conditions, the glucose was not used as an electron acceptor in the elimination of PRC.


2013 ◽  
Vol 10 (2) ◽  
pp. 241-248

A bench-scale biofiltration system was developed to evaluate the NOx removal efficiency under high oxygen concentration. The system had been running for 120 days and kept on a steady NOx removal rate above 80%. A stable NOx removal with an efficiency of more than 80% from the gas phase can be obtained by the bioreactor concept, when flue gas containing NO (400-600 ppmv) and a certain O2 concentration (0-20%). In the blank experiment, less than 35% NO was removed as oxygen increased. The tendency of the three curves about NO removal rate with various O2 concentrations was mainly similar but some differences in the highest and lowest removal rate happened in the definite O2 concentration range. Oxygen was shown to have a significant effect on NOx removal at the first two or three days when oxygen concentration increased sharply. The higher concentration NO influent gas contained, the longer time the microflora need to regain activities. Compared with humidifier, microbial regenerator which was incorporated in biofilter can improve aerobic denitrifying bacteria activity by applying alternating oxic–anoxic conditions in the presence of nitrate and nitrite. Oxidation-Reduction Potential (ORP) and Dissolved Oxygen (DO) were used to control the dose of carbon source.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 418 ◽  
Author(s):  
Pedro Cisterna-Osorio ◽  
Verónica Lazcano-Castro ◽  
Gisela Silva-Vasquez ◽  
Mauricio Llanos-Baeza ◽  
Ignacio Fuentes-Ortega

The objective of this work is to evaluate the impact of innovative modifications made to conventional effluent capture and discharge devices used in subsurface flow wetlands (SSFW). The main modifications that have been developed extend the influence of the capture and discharge device in such a way that the SSFW width and height are fully covered. This improved innovative device was applied and evaluated in two subsurface flow wetlands, one on a pilot scale and one on a real scale. To evaluate the impact of the innovative device with respect to the conventional one in the operational functioning of subsurface flow wetlands, the elimination of chemical oxygen demand (COD) was measured and compared. The results show that for the innovative device, the COD removal was 10% higher than for the conventional device, confirming the validity and effectiveness of the modifications implemented in the effluent capture and discharge devices used in SSFW.


2020 ◽  
Vol 15 (3) ◽  
pp. 580-597
Author(s):  
I. O. Ntwampe

Abstract A series of experiments was conducted using 200 mL of acid mine drainage (AMD) collected from Krugersdorp, South Africa, to determine turbid materials removal efficiency of a combination of bentonite clay, Fe or Al salt and MgCO3. The sample was poured into five 500 mL glass beakers using bentonite clay, FeCl3, AlCl3 and MgCO3 dosage respectively. The samples were treated in jar test at rapid and slow mixing, allowed to settle for 1 hour, then the pH, conductivity, total suspended solids (TSS), dissolved oxygen (DO) and oxidation reduction potential (ORP) were measured (exp A). A second and third similar sets of experiments were conducted with a combination of bentonite clay and MgCO3 (flocculent) dosage (exp B), and FeCl3 with slow mixing only (exp C). Experimental results revealed that the pH of treated effluent with bentonite clay does not exhibit significant increasing trend because of insignificant hydrolysis, whereas the pH of samples with FeCl3, AlCl3 and MgCO3 exhibit a slight decreasing trend, showing a low rate of hydrolysis. The DO and ORP of treated effluent does not show a significant changing trend compared to the untreated AMD sample. Residual TSS of the AMD samples treated with a flocculent is lower than the samples treated with bentonite clay, FeCl, AlCl3 and MgCO3. Residual turbidity of the samples with rapid mixing is identical to that of the corresponding samples with slow mixing. TSS removal efficiency of a flocculent is higher compared to other reagents. The results show that synthetic flocculent is an ideal replacement for inorganic coagulants. The scanning electron microscopy (SEM) micrographs exhibit slides with dense-sponge like flocs showing high adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document