scholarly journals Static landscape features predict uplift locations for soaring birds across Europe

2019 ◽  
Vol 6 (1) ◽  
pp. 181440 ◽  
Author(s):  
Martina Scacco ◽  
Andrea Flack ◽  
Olivier Duriez ◽  
Martin Wikelski ◽  
Kamran Safi

Soaring flight is a remarkable adaptation to reduce movement costs by taking advantage of atmospheric uplifts. The movement pattern of soaring birds is shaped by the spatial and temporal availability and intensity of uplifts, which result from an interaction of local weather conditions with the underlying landscape structure. We used soaring flight locations and vertical speeds of an obligate soaring species, the white stork ( Ciconia ciconia ), as proxies for uplift availability and intensity. We then tested if static landscape features such as topography and land cover, instead of the commonly used weather information, could predict and map the occurrence and intensity of uplifts across Europe. We found that storks encountering fewer uplifts along their routes, as determined by static landscape features, suffered higher energy expenditures, approximated by their overall body dynamic acceleration. This result validates the use of static features as uplift predictors and suggests the existence of a direct link between energy expenditure and static landscape structure, thus far largely unquantified for flying animals. Our uplift availability map represents a computationally efficient proxy of the distribution of movement costs for soaring birds across the world's landscapes. It thus provides a base to explore the effects of changes in the landscape structure on the energy expenditure of soaring birds, identify low-cost movement corridors and ultimately inform the planning of anthropogenic developments.

2019 ◽  
Author(s):  
E. Nourani ◽  
W. M. G. Vansteelant ◽  
P. Byholm ◽  
K. Safi

AbstractThermal soaring birds extract energy from the atmosphere to achieve energetically low-cost movement. When encountering regions that are energetically costly to fly over, such as open seas, they attempt to adjust the spatio-temporal pattern of their passage to maximize energy extraction from the atmosphere over these ecological barriers. We apply the concept of energy landscapes to investigate the spatio-temporal dynamics of energy availability over the open sea for soaring flight. We specifically investigated how the “energy seascape” may shape age-specific sea-crossing behaviour of European honey buzzards Pernis apivorus over the Mediterranean Sea in autumn. We found uplift potential over the sea to be the main determinant of sea-crossing length, rather than wind conditions. Considering this variable as a proxy for available energy over the sea, we constructed the energy seascape for the autumn migration season using forty years of temperature data. Our results indicate that early-migrating adult buzzards are likely to encounter adverse energy subsidence over the Mediterranean, whereas late-migrating juveniles face less adverse flight conditions, and even conditions conducive to soaring flight. Our study provides evidence that the dynamics of the energy landscape can explain intra-specific variation in migratory behaviour also at sea.


2020 ◽  
Vol 16 (1) ◽  
pp. 20190797 ◽  
Author(s):  
E. Nourani ◽  
W. M. G. Vansteelant ◽  
P. Byholm ◽  
K. Safi

Thermal soaring birds extract energy from the atmosphere to achieve energetically low-cost movement. When encountering regions that are energetically costly to fly over, such as open seas, they should attempt to adjust the spatio-temporal pattern of their passage to maximize energy extraction from the atmosphere over these ecological barriers. We applied the concept of energy landscapes to investigate the spatio-temporal dynamics of energy availability over the open sea for soaring flight. We specifically investigated how the ‘energy seascape' may shape age-specific sea-crossing behaviour of European honey buzzards, Pernis apivorus , over the Mediterranean Sea in autumn. We found uplift potential over the sea to be the main determinant of sea-crossing distance, rather than wind conditions. Considering this variable as a proxy for available energy over the sea, we constructed the energy seascape for the autumn migration season using 40 years of temperature data. Our results indicate that early-migrating adult buzzards are likely to encounter adverse energy subsidence over the Mediterranean, whereas late-migrating juveniles face less adverse flight conditions, and even conditions conducive to soaring flight. Our study provides evidence that the dynamics of the energy landscape can explain intra-specific variation in migratory behaviour also at sea.


2021 ◽  
Vol 13 (3) ◽  
pp. 1205
Author(s):  
Zuzana Pucherová ◽  
Regina Mišovičová ◽  
Gabriel Bugár ◽  
Henrich Grežo

Suburbanization, as a set of several factors, influences and changes the landscape structure of smaller municipalities in the hinterland of larger cities. The purpose of this paper is to evaluate the built-up areas related to suburbanization within three time horizons—in 2002, 2005, and 2020—in 62 municipalities of the district (including two cities, Nitra and Vráble). This study examines the process of spatial changes in landscape features (residential, industrial, agricultural, transport) related to suburbanization between 2002 and 2005 and between 2002 and 2020. The input analytical data were digital orthophotomaps from 2002 and 2005 and the current orthophotomosaics of the Slovak Republic from 2017 (GKÚ, Bratislava), updated for the year 2020 using Sentinel 2 satellite image data (European Space Agency). The impact of suburbanization processes between 2002 and 2005 did not reach the dimensions of the changes that occurred due to suburbanization processes between 2002 and 2020 or 2005 and 2020. The main research objective of the article is the identification and assessment of these changes. We determined which landscape features related to suburbanization affected spatial changes in municipalities of the district Nitra. The total area affected by one of the suburbanization processes monitored by us reached 92.52 ha in the period between 2002 and 2005. Between the years 2002 and 2020, the area reached a total of 2272.82 ha, which is an increase of 2180.30 ha in 2020 compared to 2002. This included mainly the expansion of settlements or housing (60.15%), industrial areas (29.31%), transport facilities (4.35%), agricultural areas (0.73%), and other areas (5.46%). These results show expanding suburbanization for the period from 2002 to 2020 and that this process has been gaining momentum in the municipalities of the Nitra district, especially in recent years, which changes the look of rural municipalities and the character of a typical rural landscape.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1202
Author(s):  
Miguel Tradacete ◽  
Carlos Santos ◽  
José A. Jiménez ◽  
Fco Javier Rodríguez ◽  
Pedro Martín ◽  
...  

This paper describes a practical approach to the transformation of Base Transceiver Stations (BTSs) into scalable and controllable DC Microgrids in which an energy management system (EMS) is developed to maximize the economic benefit. The EMS strategy focuses on efficiently managing a Battery Energy Storage System (BESS) along with photovoltaic (PV) energy generation, and non-critical load-shedding. The EMS collects data such as real-time energy consumption and generation, and environmental parameters such as temperature, wind speed and irradiance, using a smart sensing strategy whereby measurements can be recorded and computing can be performed both locally and in the cloud. Within the Spanish electricity market and applying a two-tariff pricing, annual savings per installed battery power of 16.8 euros/kW are achieved. The system has the advantage that it can be applied to both new and existing installations, providing a two-way connection to the electricity grid, PV generation, smart measurement systems and the necessary management software. All these functions are integrated in a flexible and low cost HW/SW architecture. Finally, the whole system is validated through real tests carried out on a pilot plant and under different weather conditions.


1958 ◽  
Vol 193 (3) ◽  
pp. 495-498 ◽  
Author(s):  
Ruth McClintock ◽  
Nathan Lifson

Measurements of oxygen consumption and carbon dioxide production were made by the Haldane open circuit method on hereditarily obese mice and littermate controls, and the energy expenditures were estimated. Studies were made on mice for short periods under ‘basal’ conditions, and for periods of approximately a day with the mice fasted and confined, fasted and relatively unconfined, and fed and unconfined. The total energy expenditures of fed and unconfined obese mice were found to be higher than those of nonobese littermate controls by virtue of a) increased ‘basal metabolism’, b) greater energy expenditure associated with feeding, and possibly c) larger energy output for activity despite reduced voluntary movement. The values obtained for total metabolism confirm those previously determined by an isotope method for measuring CO2 output.


2021 ◽  
Vol 21 (6) ◽  
pp. 4599-4614
Author(s):  
Di Liu ◽  
Wanqi Sun ◽  
Ning Zeng ◽  
Pengfei Han ◽  
Bo Yao ◽  
...  

Abstract. To prevent the spread of the COVID-19 epidemic, restrictions such as “lockdowns” were conducted globally, which led to a significant reduction in fossil fuel emissions, especially in urban areas. However, CO2 concentrations in urban areas are affected by many factors, such as weather, biological sinks and background CO2 fluctuations. Thus, it is difficult to directly observe the CO2 reductions from sparse ground observations. Here, we focus on urban ground transportation emissions, which were dramatically affected by the restrictions, to determine the reduction signals. We conducted six series of on-road CO2 observations in Beijing using mobile platforms before (BC), during (DC) and after (AC) the implementation of COVID-19 restrictions. To reduce the impacts of weather conditions and background fluctuations, we analyze vehicle trips with the most similar weather conditions possible and calculated the enhancement metric, which is the difference between the on-road CO2 concentration and the “urban background” CO2 concentration measured at the tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences. The results showed that the DC CO2 enhancement was decreased by 41 (±1.3) parts per million (ppm) and 26 (±6.2) ppm compared to those for the BC and AC trips, respectively. Detailed analysis showed that, during COVID-19 restrictions, there was no difference between weekdays and weekends during working hours (09:00–17:00 local standard time; LST). The enhancements during rush hours (07:00–09:00 and 17:00–20:00 LST) were almost twice those during working hours, indicating that emissions during rush hours were much higher. For DC and BC, the enhancement reductions during rush hours were much larger than those during working hours. Our findings showed a clear CO2 concentration decrease during COVID-19 restrictions, which is consistent with the CO2 emissions reductions due to the pandemic. The enhancement method used in this study is an effective method to reduce the impacts of weather and background fluctuations. Low-cost sensors, which are inexpensive and convenient, could play an important role in further on-road and other urban observations.


2021 ◽  
Vol 210 (07) ◽  
pp. 55-65
Author(s):  
Larisa Ikoeva ◽  
Oksana Haeva

Abstract. The purpose of the work is to study the influence of the growth regulator “Regoplant” and microfertilizer “Ultramag Kombi” on the photosynthetic productivity of the potatoes of the Barna variety based on the results of field experiments in the forest-steppe zone Republic of North Ossetia-Alania. Methods. Studies on the tasks were carried out in 2018–2020. at the experimental site of the NCRIMFA branch of the VSC of RAS in the conditions of the forest-steppe zone Republic of North Ossetia-Alania according to generally accepted methods. The soil of the experimental plot is medium-power heavy loamy leached chernozem, lined with pebbles. Results. It is established, that biological products under identical soil and weather conditions assisted different progress of plants and approach of phases of vegetation. For all variants of the experiment, the number of stems increased by 0,3–0,7 pcs., the height of the stems of potato plants – by 3,8–4,9 cm in comparison with the control. An intense increase in the mass of tops occurred when using a tank mixture (growth regulator “Regoplant” (25 ml/ha) + microfertilizer “Ultramag Combi” (0,75 l/ha)) – by 74 g/bush, or 15.5 % compared with the control variant. During the growing season, the sum of the photosynthetic potential (FP) was 1,070 thousand m2 •days/ha in the control, and on average 1198–1406 thousand m2•days/ha in the experimental variants. The greatest accumulation of dry matter was noted when using a tank mixture – 917 g/m2. The maximum pure photosynthetic productivity was observed in experimental variant IV – 6,52 g/m2•day compared to the control option. Scientific novelty. For the first time in the forest-steppe zone Republic of North Ossetia-Alania the effect of the growth regulator “Regoplant” and microfertilizer “Ultramag Kombi” on photosynthetic activity of potatoes was studied. Practical significance. The studies carried out make it possible to recommend in potato production the use of a tank mixture of an effective growth regulator “Regoplant” at a dose of 25 ml/ha and microfertilizer “Ultramag Combi” at a dose of 0,75 l/ha, as an ecologically safe and low-cost agricultural method when processing vegetative plants, providing an increase in yield and quality of tubers.


Author(s):  
I. Aicardi ◽  
S. Angeli ◽  
N. Grasso ◽  
A. M. Lingua ◽  
P. Maschio

Abstract. Climate change is already affecting the entire world, with extreme weather conditions such as drought, heat waves, heavy rain, floods and landslides becoming more frequent, including Europe. In according to Paris agreement and relative European announcement of Carbon neutrality (by 2050), the saving of water and energy supplies is a fundamental aspect in the management of resources in production, sports, hospitality facilities and so on. Some methodologies for the optimization of the consumption of natural resources are required. This article describes an activity aimed at measuring, monitoring and analysing the thickness of the snowpack on the ski slopes during the winter season to permit a sustainable approach of snowmaking in alpine ski areas . The authors propose a methodology based on the integration of multitemporal surface (ground/snow) survey by Autonomous Aerial Vehicle (AAV) and low cost GNSS receivers mounted on snow groomers for a RTK (Real Time Kinematic) solution. To obtain a complete snow surface digital models with poor detailed images on ski slopes, some pre-processing techniques have been analysed to locally improve contrast and details with a local high pass filtering. The methodology has been employed in two study areas (Limone Piemonte, Prato Nevoso) located in the province of Cuneo, in the southern alpine area of Piedmont.


Author(s):  
L.P.S.S.K. Dayananda ◽  
A. Narmilan ◽  
P. Pirapuraj

Background: Weather monitoring is an important aspect of crop cultivation for reducing economic loss while increasing productivity. Weather is the combination of current meteorological components, such as temperature, wind direction and speed, amount and kind of precipitation, sunshine hours and so on. The weather defines a time span ranging from a few hours to several days. The periodic or continuous surveillance or the analysis of the status of the atmosphere and the climate, including parameters such as temperature, moisture, wind velocity and barometric pressure, is known as weather monitoring. Because of the increased usage of the internet, weather monitoring has been upgraded to smart weather monitoring. The Internet of Things (IoT) is one of the new technology that can help with many precision farming operations. Smart weather monitoring is one of the precision agriculture technologies that use sensors to monitor correct weather. The main objective of the research is to design a smart weather monitoring and real-time alert system to overcome the issue of monitoring weather conditions in agricultural farms in order for farmers to make better decisions. Methods: Different sensors were used in this study to detect temperature and humidity, pressure, rain, light intensity, CO2 level, wind speed and direction in an agricultural farm and real time clock sensor was used to measured real time weather data. The major component of this system was an Arduino Uno microcontroller and the system ran according to a program written in the Arduino Uno software. Result: This is a low-cost smart weather monitoring system. This system’s output unit were a liquid crystal display and a GSM900A module. The weather data was displayed on a liquid crystal display and the GSM900A module was used to send the data to a mobile phone. This smart weather station was used to monitor real-time weather conditions while sending weather information to the farmer’s mobile phone, allowing him to make better decisions to increase yield.


Sign in / Sign up

Export Citation Format

Share Document