scholarly journals Extinction debt in local habitats: quantifying the roles of random drift, immigration and emigration

2020 ◽  
Vol 7 (1) ◽  
pp. 191039
Author(s):  
Yongbin Wu ◽  
Youhua Chen ◽  
Shui-Ching Chang ◽  
You-Fang Chen ◽  
Tsung-Jen Shen

We developed a time-dependent stochastic neutral model for predicting diverse temporal trajectories of biodiversity change in response to ecological disturbance (i.e. habitat destruction) and dispersal dynamic (i.e. emigration and immigration). The model is general and predicts how transition behaviours of extinction may accumulate according to a different combination of random drift, immigration rate, emigration rate and the degree of habitat destruction. We show that immigration, emigration, the areal size of the destroyed habitat and initial species abundance distribution (SAD) can impact the total biodiversity loss in an intact local area. Among these, the SAD plays the most deterministic role, as it directly determines the initial species richness in the local target area. By contrast, immigration was found to slow down total biodiversity loss and can drive the emergence of species credits (i.e. a gain of species) over time. However, the emigration process would increase the extinction risk of species and accelerate biodiversity loss. Finally but notably, we found that a shift in the emigration rate after a habitat destruction event may be a new mechanism to generate species credits.

2017 ◽  
Author(s):  
Ryan J. Almeida ◽  
Elizabeth G. Biro ◽  
Lauren M. Woods ◽  
Kevin G. Smith

ABSTRACTRecent declines in global biodiversity emphasize that understanding the factors that determine extinction risk should be a priority for ecologists and conservation biologists. A key question is whether extinctions are nonrandom and selective, in which case knowledge of selectivity may help predict and prevent future extinction. We suggest, however, that a premature focus on the identification of selective, trait-based determinants of extinctions risk is problematic if the potential importance of stochastic extinction processes are not first considered. Within this context we aimed to determine the roles that stochastic extinction and species abundance play in extinction risk by applying a rarefaction-based null model approach to analyzing biodiversity declines and extinctions in an experimental system. We focused on aquatic macroinvertebrate declines and extinction caused by predation by fish (Lepomis cyanellus) in semi-natural freshwater mesocosms. We found that null-predicted local extirpations based on the random loss of individuals were a significant predictor of observed local extirpations, and that the majority of observed extinctions were consistent with stochastic mechanisms of extinction, as predicted by a rarefaction model. We were able to identify a number of selective extinctions that were not predicted by the rarefaction model, and while these were relatively rare, they contributed to greater-than-expected loss of diversity at both local (mesocosm) and regional (whole experiment) spatial scales. Our results confirm that species abundance and occupancy are among the most important factors in identifying extinction risk in response to a disturbance. Moreover, owing to our use of a stochastic null model, we also conclude that measures of abundance are important indicators of extinction probability because they are operated on by the random loss of individuals, suggesting that stochastic extinction is an important process in this system and in biodiversity loss in general.


Author(s):  
Mark Vellend

This chapter highlights the scale dependence of biodiversity change over time and its consequences for arguments about the instrumental value of biodiversity. While biodiversity is in decline on a global scale, the temporal trends on regional and local scales include cases of biodiversity increase, no change, and decline. Environmental change, anthropogenic or otherwise, causes both local extirpation and colonization of species, and thus turnover in species composition, but not necessarily declines in biodiversity. In some situations, such as plants at the regional scale, human-mediated colonizations have greatly outnumbered extinctions, thus causing a marked increase in species richness. Since the potential influence of biodiversity on ecosystem function and services is mediated to a large degree by local or neighborhood species interactions, these results challenge the generality of the argument that biodiversity loss is putting at risk the ecosystem service benefits people receive from nature.


2021 ◽  
Vol 13 (10) ◽  
pp. 5355
Author(s):  
Vilém Pechanec ◽  
Ondřej Cudlín ◽  
Miloš Zapletal ◽  
Jan Purkyt ◽  
Lenka Štěrbová ◽  
...  

Global and regional biodiversity loss is caused by several drivers including urban development, land use intensification, overexploitation of natural resources, environmental pollution, and climate change. The main aim of our study was to adapt the GLOBIO3 model to the conditions of the Czech Republic (CR) to assess loss of naturalness and biodiversity vulnerability at the habitat level on a detailed scale across the entire CR. An additional aim was to assess the main drivers affecting the biodiversity of habitat types. The GLOBIO3 model was adapted to CZ-GLOBIO by adapting global to local scales and using habitat quality and naturalness data instead of species occurrence data. The total mean species abundance (MSA) index of habitat quality, calculated from the spatial overlay of the four MSA indicators by our new equation, reached the value 0.62. The total value of MSA for natural and near-natural habitats was found to be affected mainly by infrastructure development and fragmentation. Simultaneously, intensity of land use change and atmospheric nitrogen deposition contributed primarily to the low total value of MSA for distant natural habitats. The CZ-GLOBIO model can be an important tool in political decision making to reduce the impact of the main drivers on habitat biodiversity in the CR.


Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


2019 ◽  
Vol 11 (1) ◽  
pp. 369-390 ◽  
Author(s):  
Piero Calosi ◽  
Hollie M. Putnam ◽  
Richard J. Twitchett ◽  
Fanny Vermandele

Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of ( a) changes in biodiversity of ancient marine ecosystems to past extinctions events, ( b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and ( c) the physiological mechanisms underpinning species’ sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.


2014 ◽  
Vol 12 (1) ◽  
pp. 418-427
Author(s):  
Mansi Mansi ◽  
Rakesh Pandey ◽  
Carolyn Stringer

The purpose of this study is to explore the biodiversity reporting practices inside Indian companies. Biodiversity reporting studies across Indian companies are important because India has a wealth of biodiversity assets, that is, wildlife, flora, fauna, natural habitats, rare and endangered species and biological resources, and accounts for 7.8% of the global recorded species (Biological Diversity Act, the Biodiversity Rules, Andhra Pradesh Biodiversity Board, 2009). There are approximately 45,500 species of plants, 91,200 species of animals and 5,550 microbial species documented in India (National Biodiversity Authority, 2014). The International Union for the Conservation of Nature (IUCN) has listed 132 species of animals and plants in the Critically Endangered Category (Sudhi, 2012). To date, the literature omits to explore the biodiversity reporting practices inside Indian companies. Another important reason to conduct is this study is that India has alarming population levels; thus there is a huge demand for land, energy, and resources, which leads to massive biodiversity loss, deforestation, and habitat destruction. It is very likely that with the limited land mass and increasing population in India, several ecosystems, wildlife, flora and fauna will be/have been exploited, disturbed, and endangered. Given the high potential impact on biodiversity by industries, we are concerned that there is a dearth of biodiversity reporting studies within the Indian subcontinent. We concentrate on the largest companies (based on market capitalisation) because similar to Van Liempd and Busch (2013), we also expect that the largest companies have the greatest impact on biodiversity; therefore, they are expected to show more accountability to their stakeholders. Therefore it is worth exploring how Indian companies are engaging in biodiversity reporting practices (e.g. biodiversity conservation, biodiversity protection, habitat and ecosystem conservation); and whether these organisations are disclosing their impact(s) (both in quantity and quality) on biodiversity (such as wildlife, flora and fauna). Moreover, India has also been classified as one of 17 mega-diversity countries by The World Conservation Monitoring Centre which account for more than 70% of the planet’s species (Williams, 2001). All these reasons make this study timely and important.


2019 ◽  
Vol 5 (11) ◽  
pp. eaaz0414 ◽  
Author(s):  
Brian J. Enquist ◽  
Xiao Feng ◽  
Brad Boyle ◽  
Brian Maitner ◽  
Erica A. Newman ◽  
...  

A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth’s plant biodiversity that are rare. A large fraction, ~36.5% of Earth’s ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth’s plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.


Diversity ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 267 ◽  
Author(s):  
Francesco Liccari ◽  
Miris Castello ◽  
Livio Poldini ◽  
Alfredo Altobelli ◽  
Enrico Tordoni ◽  
...  

Biological invasions are deemed to be the second most important global driver of biodiversity loss, right behind habitat destruction and fragmentation. In this study, we aimed at testing if community invasibility, defined as the vulnerability to invasion of a community, could be associated with the characteristics of a given habitat, as described by the composition and structure of its native species. Based on a probabilistic sampling of the alien flora occurring in the temperate wetland Lake Doberdò (Friuli Venezia Giulia region, NE Italy) and using a null-model-based approach, the observed occurrence of Invasive Alien Species (IAS) within sampling units was randomized within habitats. While testing the degree of invasibility for each habitat within the wetland, our null hypothesis postulated that habitats are equally invaded by IAS, as IAS can spread homogeneously in the environment thanks to their plasticity in functional traits that makes them able to cope with different ecological conditions. The obtained results comparing observed IAS frequencies, abundance and richness to those obtained by the null model randomizations show that, for all habitats, invasion was selective. Specifically, a marked preference for habitats with an intermediate disturbance level, a high nutrients level and a medium-high light availability was observed, while an avoidance was detected for habitats characterized by lower levels of nutrients and light availability or extreme conditions caused by prolonged submersion. This method allows us to provide useful information using a simple-to-run simulation for the management of the IAS threat within protected areas. Moreover, the method allows us to infer important ecological characteristics leading to habitat invasion without sampling the environmental characteristic of the habitats, which is an expensive operation in terms of time and money.


2020 ◽  
Vol 12 (24) ◽  
pp. 10455
Author(s):  
Roberto Benocci ◽  
Giovanni Brambilla ◽  
Alessandro Bisceglie ◽  
Giovanni Zambon

The characterization of environmental quality and the detection of the first sign of environmental stress, with reference to human intrusion, is currently a very important goal to prevent further environmental degradation, and consequently habitat destruction, in order to take appropriate preservation measures. Besides the traditional field observation and satellite remote sensing, geophonic and/or biophonic sounds have been proposed as potential indicators of terrestrial and aquatic settings’ status. In this work, we analyze a series of short audio-recordings taken in urban parks and bushes characterized by the presence of different human-generated-noise and species abundance. This study aims to propose a tool devoted to the investigation of urban and natural environments in a context with different soundscape qualities, such as, for example, those that can be found in urban parks. The analysis shows the ways in which it is possible to distinguish among different habitats by the use of a combination of different acoustic and sound ecology indices.


Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. 685-688 ◽  
Author(s):  
Peter Soroye ◽  
Tim Newbold ◽  
Jeremy Kerr

Climate change could increase species’ extinction risk as temperatures and precipitation begin to exceed species’ historically observed tolerances. Using long-term data for 66 bumble bee species across North America and Europe, we tested whether this mechanism altered likelihoods of bumble bee species’ extinction or colonization. Increasing frequency of hotter temperatures predicts species’ local extinction risk, chances of colonizing a new area, and changing species richness. Effects are independent of changing land uses. The method developed in this study permits spatially explicit predictions of climate change–related population extinction-colonization dynamics within species that explains observed patterns of geographical range loss and expansion across continents. Increasing frequencies of temperatures that exceed historically observed tolerances help explain widespread bumble bee species decline. This mechanism may also contribute to biodiversity loss more generally.


Sign in / Sign up

Export Citation Format

Share Document