scholarly journals Species abundance plays a dominant role in local and regional extinctions in freshwater communities and allows the identification of selective extinctions

2017 ◽  
Author(s):  
Ryan J. Almeida ◽  
Elizabeth G. Biro ◽  
Lauren M. Woods ◽  
Kevin G. Smith

ABSTRACTRecent declines in global biodiversity emphasize that understanding the factors that determine extinction risk should be a priority for ecologists and conservation biologists. A key question is whether extinctions are nonrandom and selective, in which case knowledge of selectivity may help predict and prevent future extinction. We suggest, however, that a premature focus on the identification of selective, trait-based determinants of extinctions risk is problematic if the potential importance of stochastic extinction processes are not first considered. Within this context we aimed to determine the roles that stochastic extinction and species abundance play in extinction risk by applying a rarefaction-based null model approach to analyzing biodiversity declines and extinctions in an experimental system. We focused on aquatic macroinvertebrate declines and extinction caused by predation by fish (Lepomis cyanellus) in semi-natural freshwater mesocosms. We found that null-predicted local extirpations based on the random loss of individuals were a significant predictor of observed local extirpations, and that the majority of observed extinctions were consistent with stochastic mechanisms of extinction, as predicted by a rarefaction model. We were able to identify a number of selective extinctions that were not predicted by the rarefaction model, and while these were relatively rare, they contributed to greater-than-expected loss of diversity at both local (mesocosm) and regional (whole experiment) spatial scales. Our results confirm that species abundance and occupancy are among the most important factors in identifying extinction risk in response to a disturbance. Moreover, owing to our use of a stochastic null model, we also conclude that measures of abundance are important indicators of extinction probability because they are operated on by the random loss of individuals, suggesting that stochastic extinction is an important process in this system and in biodiversity loss in general.

2020 ◽  
Vol 7 (1) ◽  
pp. 191039
Author(s):  
Yongbin Wu ◽  
Youhua Chen ◽  
Shui-Ching Chang ◽  
You-Fang Chen ◽  
Tsung-Jen Shen

We developed a time-dependent stochastic neutral model for predicting diverse temporal trajectories of biodiversity change in response to ecological disturbance (i.e. habitat destruction) and dispersal dynamic (i.e. emigration and immigration). The model is general and predicts how transition behaviours of extinction may accumulate according to a different combination of random drift, immigration rate, emigration rate and the degree of habitat destruction. We show that immigration, emigration, the areal size of the destroyed habitat and initial species abundance distribution (SAD) can impact the total biodiversity loss in an intact local area. Among these, the SAD plays the most deterministic role, as it directly determines the initial species richness in the local target area. By contrast, immigration was found to slow down total biodiversity loss and can drive the emergence of species credits (i.e. a gain of species) over time. However, the emigration process would increase the extinction risk of species and accelerate biodiversity loss. Finally but notably, we found that a shift in the emigration rate after a habitat destruction event may be a new mechanism to generate species credits.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2455 ◽  
Author(s):  
Lauren M. Woods ◽  
Elizabeth G. Biro ◽  
Muxi Yang ◽  
Kevin G. Smith

The effects of disturbance on local species diversity have been well documented, but less recognized is the possibility that disturbances can alter diversity at regional spatial scales. Since regional diversity can dictate which species are available for recolonization of degraded sites, the loss of diversity at regional scales may impede the recovery of biodiversity following a disturbance. To examine this we used a chemical disturbance of rotenone, a piscicide commonly used for fish removal in aquatic habitats, on small fishless freshwater ponds. We focused on the non-target effects of rotenone on aquatic invertebrates with the goal of assessing biodiversity loss and recovery at both local (within-pond) and regional (across ponds) spatial scales. We found that rotenone caused significant, large, but short-term losses of species at both local and regional spatial scales. Using a null model of random extinction, we determined that species were selectively removed from communities relative to what would be expected if species loss occurred randomly. Despite this selective loss of biodiversity, species diversity at both local and regional spatial scales recovered to reference levels one year after the addition of rotenone. The rapid recovery of local and regional diversity in this study was surprising considering the large loss of regional species diversity, however many aquatic invertebrates disperse readily or have resting stages that may persist through disturbances. We emphasize the importance of considering spatial scale when quantifying the impacts of a disturbance on an ecosystem, as well as considering how regional species loss can influence recovery from disturbance.


2021 ◽  
Vol 9 (2) ◽  
pp. 190
Author(s):  
Jeffrey Short ◽  
Christine Voss ◽  
Maria Vozzo ◽  
Vincent Guillory ◽  
Harold Geiger ◽  
...  

Unprecedented recruitment of Gulf menhaden (Brevoortia patronus) followed the 2010 Deepwater Horizon blowout (DWH). The foregone consumption of Gulf menhaden, after their many predator species were killed by oiling, increased competition among menhaden for food, resulting in poor physiological conditions and low lipid content during 2011 and 2012. Menhaden sampled for length and weight measurements, beginning in 2011, exhibited the poorest condition around Barataria Bay, west of the Mississippi River, where recruitment of the 2010 year class was highest. Trophodynamic comparisons indicate that ~20% of net primary production flowed through Gulf menhaden prior to the DWH, increasing to ~38% in 2011 and ~27% in 2012, confirming the dominant role of Gulf menhaden in their food web. Hyperabundant Gulf menhaden likely suppressed populations of their zooplankton prey, suggesting a trophic cascade triggered by increased menhaden recruitment. Additionally, low-lipid menhaden likely became “junk food” for predators, further propagating adverse effects. We posit that food web analyses based on inappropriate spatial scales for dominant species, or solely on biomass, provide insufficient indication of the ecosystem consequences of oiling injury. Including such cascading and associated indirect effects in damage assessment models will enhance the ability to anticipate and estimate ecosystem damage from, and provide recovery guidance for, major oil spills.


2021 ◽  
Vol 13 (10) ◽  
pp. 5355
Author(s):  
Vilém Pechanec ◽  
Ondřej Cudlín ◽  
Miloš Zapletal ◽  
Jan Purkyt ◽  
Lenka Štěrbová ◽  
...  

Global and regional biodiversity loss is caused by several drivers including urban development, land use intensification, overexploitation of natural resources, environmental pollution, and climate change. The main aim of our study was to adapt the GLOBIO3 model to the conditions of the Czech Republic (CR) to assess loss of naturalness and biodiversity vulnerability at the habitat level on a detailed scale across the entire CR. An additional aim was to assess the main drivers affecting the biodiversity of habitat types. The GLOBIO3 model was adapted to CZ-GLOBIO by adapting global to local scales and using habitat quality and naturalness data instead of species occurrence data. The total mean species abundance (MSA) index of habitat quality, calculated from the spatial overlay of the four MSA indicators by our new equation, reached the value 0.62. The total value of MSA for natural and near-natural habitats was found to be affected mainly by infrastructure development and fragmentation. Simultaneously, intensity of land use change and atmospheric nitrogen deposition contributed primarily to the low total value of MSA for distant natural habitats. The CZ-GLOBIO model can be an important tool in political decision making to reduce the impact of the main drivers on habitat biodiversity in the CR.


Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaëtane Le Provost ◽  
Jan Thiele ◽  
Catrin Westphal ◽  
Caterina Penone ◽  
Eric Allan ◽  
...  

AbstractLand-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


2019 ◽  
Vol 11 (1) ◽  
pp. 369-390 ◽  
Author(s):  
Piero Calosi ◽  
Hollie M. Putnam ◽  
Richard J. Twitchett ◽  
Fanny Vermandele

Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of ( a) changes in biodiversity of ancient marine ecosystems to past extinctions events, ( b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and ( c) the physiological mechanisms underpinning species’ sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.


2018 ◽  
Author(s):  
Samuel Starko ◽  
Lauren Bailey ◽  
Elandra Creviston ◽  
Katelyn James ◽  
Alison Warren ◽  
...  

AbstractBiodiversity loss is driven by interacting factors operating at different spatial scales. Yet, there remains uncertainty as to how fine-scale environmental conditions mediate biological responses to broad-scale stressors. We surveyed mid-latitude kelp bed habitats to determine whether local habitat heterogeneity has mediated changes in community diversity after more than two decades of extreme temperature events, most notably the 2013-2016 heat wave. Local wave exposure conditions were key in determining responses, with some habitats remaining stable and others experiencing near complete diversity loss, leading to local declines without regional extinctions. Wave-sheltered shores, which saw the largest declines, are a very common habitat type in the Northeast Pacific and may be especially sensitive to climate-related losses in kelp diversity and abundance. Our findings highlight how local gradients can interact with global drivers to facilitate diversity loss and demonstrate how incorporating differences between habitat patches can be essential to capturing scale-dependent biodiversity loss across the landscape.


2021 ◽  
Author(s):  
Andres F Ramirez-Mejia ◽  
Nicolas Urbina-Cardona ◽  
Francisco Sanchez

Land-use intensification imposes selective pressures that systematically change the frequency of wild population phenotypes. Growing evidence is biased towards the comparison of populations from discrete categories of land uses, ignoring the role of landscape emerging properties on the phenotype selection of wild fauna. Across the largest urban-rural gradient of the Colombian Orinoquia, we measured ecomorphological traits of 216 individuals of the Flat-faced Fruit-eating Bat Artibeus planirostris, to evaluate the scale of effect at which landscape transformation better predicts changes in phenotype and abundance of an urban-tolerant species. Forest percentage at 1.25 km was the main predictor affecting abundance, wing aspect ratio, and body mass of this phyllostomid; but the direction of the effect differed between abundance and ecomorphological traits. Although landscape factors explained changes in the forearm length at all spatial scales, the effect was sex-dependent and the most important predictor was forest percentage at 0.5 km. Our results indicate that landscape elements and spatial scale interact to shape ecomorphological traits and the abundance of A. planirostris. Interestingly, the scale of effect was congruent among all biological responses. A pattern that likely arises since species' abundance can reflect the variation on phenotype under different environmental filters across landscape scenarios.


2021 ◽  
Vol 9 (12) ◽  
pp. 1353
Author(s):  
Guillermo Figueroa-Muñoz ◽  
Carlos Molinet ◽  
Manuel Díaz ◽  
Patricio De los Ríos-Escalante

The southern king crab, Lithodes santolla, is an important fishery resource in the inner seas of Chilean Patagonia. The fishing gear used to catch southern king crab (bait trap) and its operation at different depths over several months provide the opportunity to gather information about relative abundance. The aim of the present study was to analyze the information collected from the catches of southern king crab and its associated fauna in the Magdalena Fjord to study the biodiversity and ecology of scavenging decapod crustaceans. Specifically, the study aimed to determine the bathymetric patterns of abundance by species, to model the abundance by season (winter and spring) and to determine the structuring pattern of scavenging decapods assemblage. Samples were collected between June and November 2019 by deploying traps in four bathymetric strata: 1 = 0–50 m; 2 = 51–100 m; 3 =101–150 m; 4 = 151–200 m. We registered a total of 673 decapod specimens associated with the southern king crab fishery, representing five species: Lithodes santolla (n = 96), Libidoclaea smithii (n = 10), Metacarcinus edwardsii (n = 58), Munida gregaria (n = 507) and Peltarion spinulosum (n = 2). The abundance of decapod species varied by month and bathymetric strata. We found bathymetric patterns for L. santolla abundance, M. gregaria, M. edwardsii, and total species abundance. The most informative model to explain scavenging decapod abundance by generalized linear model (GLM) included species and season. The null model of species co-occurrence analysis revealed that all species associations during the sampled months were random. Our study is the first that provides evidence about patterns of bathymetrical and temporal variation of scavenging decapod abundance and expands the body of knowledge regarding the biodiversity of scavenger decapods in the Magdalena Sound.


Sign in / Sign up

Export Citation Format

Share Document