scholarly journals Infrared absorbing nanoparticle impregnated self-heating fabrics for significantly improved moisture management under ambient conditions

2021 ◽  
Vol 8 (5) ◽  
pp. 202222
Author(s):  
Lahiru A. Wijenayaka ◽  
Ruchira N. Wijesena ◽  
Nadeeka D. Tissera ◽  
W. R. L. Nisansala Bandara ◽  
Gehan J. Amaratunga ◽  
...  

Propensity of a textile material to evaporate moisture from its surface, commonly referred to as the ‘moisture management’ ability, is an important characteristic that dictates the applicability of a given textile material in the activewear garment industry. Here, an infrared absorbing nanoparticle impregnated self-heating (IRANISH) fabric is developed by impregnating tin-doped indium oxide (ITO) nanoparticles into a polyester fabric through a facile high-pressure dyeing approach. It is observed that under simulated solar radiation, the impregnated ITO nanoparticles can absorb IR radiation, which is effectively transferred as thermal energy to any moisture present on the fabric. This transfer of thermal energy facilitates the enhanced evaporation of moisture from the IRANISH fabric surface and as per experimental findings, a 54 ± 9% increase in the intrinsic drying rate is observed for IRANISH fabrics compared with control polyester fabrics that are treated under identical conditions, but in the absence of nanoparticles. Approach developed here for improved moisture management via the incorporation of IR absorbing nanomaterials into a textile material is novel, facile, efficient and applicable at any stage of garment manufacture. Hence, it allows us to effectively overcome the limitations faced by existing yarn-level and structural strategies for improved moisture management.

2021 ◽  
Vol 16 ◽  
pp. 155892502110295
Author(s):  
Abdus Shahid ◽  
Solaiman Miah ◽  
Abdur Rahim

Jute bags are widely used to carry food grains and other materials that may be prone to quality deterioration due to thermal fluctuation. Thermal and moisture properties play a significant role in the packaging materials in the form of a container. This study deals with the effect of microencapsulated phase change material (MPCM) with hydrophobic binder on thermal and moisture management properties of jute fabric. Jute fabric was treated with MPCM by pad-dry-cure method. The treated sample was characterized by thermogravimetric analysis (TGA), differential scanning colorimeter (DSC), scanning electron microscope (SEM), moisture management tester (MMT), and air permeability tester. The results revealed that MPCM treated jute fabric shows greater thermal stability and heat absorption ability of 10.58 J/g while changing from solid to liquid phase. The SEM image ensures even distribution of MPCMs on fabric surface and surface roughness was also observed using image processing software. The air permeability was found to decrease whereas the water repellency enhanced in the developed sample.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7620
Author(s):  
Meryem Saidi ◽  
Phuoc Hoang Ho ◽  
Pankaj Yadav ◽  
Fabrice Salles ◽  
Clarence Charnay ◽  
...  

This paper reports on the comparison of three zirconium-based metal organic frameworks (MOFs) for the capture of carbon dioxide and ethanol vapour at ambient conditions. In terms of efficiency, two parameters were evaluated by experimental and modeling means, namely the nature of the ligands and the size of the cavities. We demonstrated that amongst three Zr-based MOFs, MIP-202 has the highest affinity for CO2 (−50 kJ·mol−1 at low coverage against around −20 kJ·mol−1 for MOF-801 and Muc Zr MOF), which could be related to the presence of amino functions borne by its aspartic acid ligands as well as the presence of extra-framework anions. On the other side, regardless of the ligand size, these three materials were able to adsorb similar amounts of carbon dioxide at 1 atm (between 2 and 2.5 µmol·m−2 at 298 K). These experimental findings were consistent with modeling studies, despite chemisorption effects, which could not be taken into consideration by classical Monte Carlo simulations. Ethanol adsorption confirmed these results, higher enthalpies being found at low coverage for the three materials because of stronger van der Waals interactions. Two distinct sorption processes were proposed in the case of MIP-202 to explain the shape of the enthalpic profiles.


1988 ◽  
Vol 58 (12) ◽  
pp. 697-706 ◽  
Author(s):  
K. Hong ◽  
N. R. S. Hollies ◽  
S. M. Spivak

Cotton, polyester, and a blend in plain woven, pure finish fabrics were studied to determine their influence on dynamic surface wetness and moisture transfer through textiles. A simulated sweating skin was used, over which were placed test fabrics incorporating a clothing hygrometer to continuously measure dynamic surface wetness. Moisture vapor concentration and its rate of change at both inner and outer fabric surfaces was determined. At the inner fabric surface facing the sweating skin, all-cotton fabric exhibited the slowest buildup of moisture vapor concentration, followed by the cotton/polyester blend. The all-polyester fabric showed the highest rate of change in moisture vapor concentration. These dynamic moisture changes differ from reports of little or no fiber effect when tested at equilibrium moisture transfer conditions. Indeed the equilibrium moisture vapor transfer also showed no significant fiber differences in this work. It is the short time, dynamic moisture vapor transfer that is believed to hold most promise for explaining wetness and moisture-related subjective sensations in human comfort of worn clothing. The newly modified clothing hygrometer provides a sensitive method for ascertaining dynamic surface wetness on both fabrics and clothing as worn.


2021 ◽  
Vol 28 (8) ◽  
Author(s):  
Vikrant G. Gorade ◽  
Babita U. Chaudhary ◽  
Ravindra D. Kale

2013 ◽  
Vol 275-277 ◽  
pp. 2182-2185
Author(s):  
Jun Zhang

Polyester fabric was finished by water-absorbent and quick-dry agent Casofter-252 and moisture management agent Hipom-790 for improving its moisture management property. The quality of moisture absorption finishing of the polyester fabric was detected in terms of wicking height and fast drying time. And the influence of agent concentration, pH, and curing temperature and time on moisture management property was studied in order to obtain the optimum process condition. The best choice for Casofter-252 was agent concentration 20g/L, pH 3, curing temperature 135 oC, curing time 120s, and the optimum finishing condition for Hipom-790 was as follows: agent concentration 30g/L, pH 5, curing at 115 oC for 140 s. The finished polyester fabric under the optimum condition showed much better air permeability. The tensile strength of the fabric increased after moisture finishing with Hipom-790 while it decreased for Casofter-252 used as a finishing agent.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ahmed Elsharabasy ◽  
Mohamed Bakr ◽  
M. Jamal Deen

Abstract We propose a wide-band metamaterial perfect absorber (MPA), using the coupling in the near-field of a quadruple split-ring resonator concentric with crossed ellipses. We designed the MPA with a metal–insulator-metal (MIM) structure for use in thermal energy harvesting. A gradient-based optimization approach was carried out to maximize the absorption of infrared (IR) radiation around 10 μm. Owing to the near-field coupling of resonators with optimal design parameters, the peaks of the absorption responses approach each other, thus broadening the overall bandwidth with almost unity absorptivity. The proposed design has a resonance at 10 μm resulting from magnetic polaritons (MPs) and thus maintains high absorption above 99% up to a range of incident-angles greater than 60° and exhibits a polarization-free behavior due to symmetry. When the optimal design was numerically examined to fabrication tolerances, it showed negligible sensitivities in the absorptivity with respect to design parameters. The strong electric field enhancement inside the split-ring gaps and between the ends of the cross arms and the surrounding ring enables designing MIM diodes to rectify the harvested thermal radiations at 288 K. MIM diodes can be built by the deposition of thin insulators to sit in these gaps. The MIM diode and MPA work together to harvest and rectify the incident IR radiation in a manner similar to the operation of rectennas. The MPA outperforms the traditional nano-antennas in impedance matching efficiency because of its higher resistance. Also, its dual-polarization reception capability doubles the rectenna efficiency. Our proposed MPA retained absorptivity more than 99% when coupled with MIM diodes whose resistances are in the range of 500 Ω–1 MΩ.


2011 ◽  
Vol 189-193 ◽  
pp. 634-638
Author(s):  
Gang Xian Zhang ◽  
Xi Ping Zeng ◽  
Wei Hu ◽  
Feng Xiu Zhang ◽  
Ling Xiao Jing

Wearability of polyester textile is very outstanding in chemical fabric;silkworm pupae protein has good biocompatibility. In order to make a new kind of polyester textile which not only has good wearability, but also has good biocompatibility, the polyester fibers were semi-encased with sucrose ester to endue polyester fibers with reacting hydroxyl groups, and then silkworm pupae protein was grafted on surface of polyester fiber textile with a crosslinkage compound in this study. The structure of polyester textile grafted with silkworm pupae protein were studied by SEM, X-ray diffraction and differential scanning calorimetry(DSC). The polyester fibers were enclosed by layer of materials in SEM, X-ray diffraction showed silkworm pupae protein was random coil conformation, DSC exhibited the thermal property of polyester fibers almost did not change. The wearability of polyester fabric grafted silkworm pupae protein was measured too. With the increase of grafting silkworm pupae protein rate on polyester fabric, moisture permeability of polyester fabric increased firstly and decreased a little subsequently, the moister regain increased monotonously, the cockle elasticity decreased a little, the whiteness almost did not change, and flexural stiffness increased a little.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Beer Pal Singh ◽  
Ravish Kumar Upadhyay ◽  
Rakesh Kumar ◽  
Kamna Yadav ◽  
Hector I. Areizaga-Martinez

The strategy and technique exploited in the synthesis of nanostructure materials have an explicit effect on the nucleation, growth, and properties of product materials. Nanoparticles of zinc sulfide (ZnS) have been synthesized by new infrared radiation (IR) assisted and Stokes’ law based controlled bottom-up approach without using any capping agent and stirring. IR has been used for heating the reaction surface designed in accordance with the well-known Stokes law for a free body falling in a quiescent fluid for the synthesis of ZnS nanoparticles. The desired concentration of aqueous solutions of zinc nitrate (Zn(NO3)2·4H2O) and thioacetamide (CH3CSNH2) was reacted in a controlled manner by IR radiation heating at the reaction area (top layer of reactants solution) of the solution which results in the formation of ZnS nanoparticles at ambient conditions following Stokes’ law for a free body falling in a quiescent fluid. The phase, crystal structure, and particle size of as-synthesized nanoparticles were studied by X-ray diffraction (XRD). The optical properties of as-synthesized ZnS nanoparticles were studied by means of optical absorption spectroscopic measurements. The optical energy band gap and the nature of transition have been studied using the well-known Tauc relation with the help of absorption spectra of as-synthesized ZnS nanoparticles.


1989 ◽  
Vol 111 (1) ◽  
pp. 123-129 ◽  
Author(s):  
A. M. Birk ◽  
W. R. Davis

The exhaust plumes and visible areas of the engine exhaust ducting associated with marine gas turbines are major sources of infrared (IR) radiation on ships. These high-radiance sources make excellent targets for IR-guided threats. In recent years significant efforts have been made to reduce or eliminate these high-radiance sources to increase the survivability of naval and commercial ships when sailing in high-risk areas of the world. Typical IR signature suppression (IRSS) systems incorporate film cooling of visible metal sources, optical blockage to eliminate direct line-of-sight visibility of hot exhaust system parts, and cooling air injection and mixing for plume cooling. Because the metal surfaces radiate as near black bodies, every attempt is made to reduce the temperatures of the visible surfaces to near ambient conditions. The exhaust gases radiate selectively and therefore do not have to be cooled to the same degree as the metal surfaces. The present paper briefly describes the motivation for incorporating IRSS into the exhaust systems of marine power plants. IRSS hardware developed in Canada by the Canadian Department of National Defence and Davis Engineering Limited is presented along with details of their operating principles. A typical installation is presented and discussed. Design impacts on the ship are described with reference to engine back pressure, noise, and weight and center of gravity effects.


2014 ◽  
Vol 04 (04) ◽  
pp. 1450029 ◽  
Author(s):  
Gaurav Vats ◽  
Himmat Singh Kushwaha ◽  
Rahul Vaish ◽  
Niyaz Ahamad Madhar ◽  
Mohammed Shahabuddin ◽  
...  

This work emphasis on the competence of (100)-oriented PMN–PT buffer layered (0.68 PbMg 1/3 Nb 2/3 O 3–0.32 PbTiO 3 with Pb ( Zr 0.3 Ti 0.7) O 3/ PbO x buffer layer) and (001)-oriented PMN–PT (0.67 PbMg 1/3 Nb 2/3 O 3–0.33 PbTiO 3) for low grade thermal energy harvesting using Olsen cycle. Our analysis (based on well-reported experiments in literature) reveals that these films show colossal energy harnessing possibility. Both the films are found to have maximum harnessable energy densities (PMN–PT buffer layered: 8 MJ/m3; PMN–PT: 6.5 MJ/m3) in identical ambient conditions of 30–150°C and 0–600 kV/cm. This energy harnessing plausibility is found to be nearly five times higher than the previously reported values to date.


Sign in / Sign up

Export Citation Format

Share Document