scholarly journals On the variation with frequency of the conductivity and dielectric constant of dielectrics for high-frequency oscilla­tions

Although we have a certain amount of knowledge regarding the variation of the conductivity of dielectrics with frequency for comparatively low frequencies, within the telephonic range, say, up to 5000 per second, where the conductivity is in general a linear function of the frequency, it cannot be said that any information exists at present as to what happens when we extend the range of frequencies up to those employed in radiotelegraphic work. That energy is dissipated in condensers used in oscillation circuits has been known since 1861, when W. Siemens pointed out that the glass of a Leyden jar became heated on charge and discharge. Threlfall, extending the early experiments of Arno, working with a rotating electrostatic field, found that under these conditions there was no hysteresis loss at 10 7 ∼ per second in the dielectrics he employed: ebonite, glass, and sulphur. At somewhat lower frequencies of the order of a million a second, several observers have made measurements of the energy dissipated, and find that condensers have an appreciable decrement. Reference may be made to the following: W. Hahnemann and L. Adelmann, G. Dupreux, J. J. Stockley, M. Wien, J. A. Fleming and G. B. Dyke, L. W. Austin, E. F. W. Alexanderson. Most of the measurements were made at working voltages, so it is impossible to say how much of the energy loss is due to brush discharges and how much to a true dielectric conductivity. Moreover, the measurements have generally been confined to some particular frequency. The object of the experiments to be described below was to measure the conductivity of the dielectric over a wide range of frequency, employing continuous oscilla­tions of sine wave form, and of low voltages.

1928 ◽  
Vol 48 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Ronald V. Christie

1. A method is described for measuring the relative impedance of living cells to diathermy currents. 2. The diathermy current penetrates the living cell, and heat production is intracellular as well as extracellular. 3. A small proportion of the impedance of living cells to the diathermy current seems not to lead to the production of heat. 4. Evidence is given that the addition of saponin produces an appreciable increase in the conductivity of an electrolyte. Its use is therefore contraindicated when electrical measurements are being made on biological material. 5. The currents used in diathermy behave as do high frequency currents of the pure sine wave form in respect to their passage through biological material.


2021 ◽  
Vol 35 (11) ◽  
pp. 1270-1271
Author(s):  
Tadao Ohtani ◽  
Yasushi Kanai ◽  
Nikolaos Kantartzis

The reduction of the total computational overhead in the design of complex geometries, such as modern aircrafts, is a very challenging problem, particularly when electrostatic fields (ESF) for lightning protection, are considered. To this aim, an efficient ESF evaluation scheme, based on the nonstandard finite-difference time-domain (NS-FDTD) method, is proposed. Combining the total-field/scattered-field (TF/SF) concept with a distinct sine-wave form, the novel technique cancels the accumulative errors caused by the static field component. Numerical results reveal that the featured method enables the use of high-frequency discretization models to ESF problems, with notable accuracy and seriously decreased design costs.


2019 ◽  
Vol 4 (34) ◽  
pp. eaax4615 ◽  
Author(s):  
J. Zhu ◽  
C. White ◽  
D. K. Wainwright ◽  
V. Di Santo ◽  
G. V. Lauder ◽  
...  

Tuna and related scombrid fishes are high-performance swimmers that often operate at high frequencies, especially during behaviors such as escaping from predators or catching prey. This contrasts with most fish-like robotic systems that typically operate at low frequencies (< 2 hertz). To explore the high-frequency fish swimming performance space, we designed and tested a new platform based on yellowfin tuna (Thunnus albacares) and Atlantic mackerel (Scomber scombrus). Body kinematics, speed, and power were measured at increasing tail beat frequencies to quantify swimming performance and to study flow fields generated by the tail. Experimental analyses of freely swimming tuna and mackerel allow comparison with the tuna-like robotic system. The Tunabot (255 millimeters long) can achieve a maximum tail beat frequency of 15 hertz, which corresponds to a swimming speed of 4.0 body lengths per second. Comparison of midline kinematics between scombrid fish and the Tunabot shows good agreement over a wide range of frequencies, with the biggest discrepancy occurring at the caudal fin, primarily due to the rigid propulsor used in the robotic model. As frequency increases, cost of transport (COT) follows a fish-like U-shaped response with a minimum at ~1.6 body lengths per second. The Tunabot has a range of ~9.1 kilometers if it swims at 0.4 meter per second or ~4.2 kilometers at 1.0 meter per second, assuming a 10–watt-hour battery pack. These results highlight the capabilities of high-frequency biological swimming and lay the foundation to explore a fish-like performance space for bio-inspired underwater vehicles.


1959 ◽  
Vol 196 (4) ◽  
pp. 779-782 ◽  
Author(s):  
Henry P. Ward

The parameters of electrical stimuli effective in producing sustained self-stimulation behavior were studied in the septal region in rats. Constant current sine wave stimuli were effective over a wide, but specific, range of frequencies, 40–1000 cps, suggesting that the proper choice of stimuli might separate effects essential to the self-stimulation phenomenon from any concomitant but unrelated effects having different frequency sensitive characteristics. The interrelation of current, pulse duration, and frequency using a modified rectangular wave form at low frequencies was explored by threshold measurements. The quantity of electricity delivered for each bar press was more important than either the frequency or pulse current per se, but this in turn depended on the pulse duration used. The longer the pulse duration the more coulombs were required to achieve threshold. Single pulses were ineffective in producing sustained self-stimulation.


2020 ◽  
Vol 16 ◽  
Author(s):  
Alliya Qamar ◽  
Rehana Zia ◽  
Madeeha Riaz

Background: Hydroxyapatite is similar to bone mineral in chemical composition, has good biocompatibility with host tissue and bone. Objective: This work aims to tailor the mechanical and dielectric properties of hydroxyapatite with zinc sudstitution, to improve wearability of implant and accelerate the healing process. Method: Pure and zinc incorporated hydroxyapatite Ca10(PO4)6(OH)2 samples have been successfully prepared by means of the chemical precipitation method. Results: The results showed that hydroxyapatite(Hap) having hexagonal structure was the major phase identified in all the samples. It was found that secondary phase of β-tricalcium phosphate (β-TCP) formed due to addition of Zinc resulting in biphasic structure BCP (Hap + β-TCP). A minor phase of ZnO also formed for higher concentration of Zn (Zn ≥ 2mol%) doping. It was found that the Zn incorporation to Hap enhanced both mechanical and dielectric properties without altering the bioactive properties. The microhardness increased upto 0.87 GPa for Zn concentration equal to 1.5mol%, which is comparable to the human bone ~0.3 - 0.9 GPa. The dielectric properties evaluated in the study showed that 1.5 mol% Zn doped hydroxyapatite had highest dielectric constant. Higher values of dielectric constant at low frequencies signifies its importance in healing processes and bone growth due to polarization of the material under the influence of electric field. Conclusion: Sample Z1.5 having 1.5 mol% Zn doping showed the most optimized properties suitable for bone regeneration applications.


2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


Author(s):  
Hui Wang ◽  
Hanbo Zhao ◽  
Yujia Chu ◽  
Jiang Feng ◽  
Keping Sun

Abstract High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to non-echolocating mammals. In addition, several nominally significant positively selected sites were detected in the non-functional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


2004 ◽  
Vol 18 (07) ◽  
pp. 975-988
Author(s):  
SHAILESH SHUKLA ◽  
DEEPAK KUMAR ◽  
NITYA NATH SHUKLA ◽  
RAJENDRA PRASAD

Although most insulators are expected to undergo insulator to metal transition on lattice compression, tetrahedral semiconductors Si, GaAs and InSb can become metallic on compression as well as by expansion. We focus on the transition by expansion which is rather peculiar; in all cases the direct gap at Γ point closes on expansion and thereafter a zero-gap state persists over a wide range of lattice constant. The solids become metallic at an expansion of 13% to 15% when an electron Fermi surface around L-point and a hole Fermi surface at Γ-point develop. We provide an understanding of this behavior in terms of arguments based on symmetry and simple tight-binding considerations. We also report results on the critical behavior of conductivity in the metal phase and the static dielectric constant in the insulating phase and find common behavior. We consider the possibility of excitonic phases and distortions which might intervene between insulating and metallic phases.


Sign in / Sign up

Export Citation Format

Share Document