scholarly journals Contributions to Born’s new theory of the electromagnetic field

Born’s theory starts from describing the field by two vectors (or a “six-vector”), B, E, the magnetic induction and electric field-strength respectively. A second pair of vectors (or a second six-vector) H, D, is introduced, merely an abbreviation, if you please, for the partial derivatives of the Lagrange function with respect to the components of B and E respectively (though with the negative sign for E). H is called magnetic field and D dielectric displacement. It was pointed out by Born that it is possible to choose the independent vectors in different ways. Four different and, to a certain extent, equivalent and symmetrical representations of the theory can be given by combining each of the two “magnetic” vectors with each of the two “electric” vectors to form the set of six independent variables. Every one of these four representations can be derived from a variation principle, using, of course, entirely different Lagrange functions—physically different, that is, though their analytic expressions by the respective variables are either identical or very similar to each other. In studying Born’s theory I came across a further representation, which is so entirely different from all the aforementioned, and presents such curious analytical aspects, that I desired to have it communicated. The idea is to use two complex combinations of B, E, H, D as independent variables, but in such a way that their “conjugates,” i. e. , the partial derivatives of L , equal their complex conjugates.

Author(s):  
Lei Tian ◽  
Limei Song ◽  
Yu Zheng ◽  
Jinhai Wang

Multi-coil magnetic stimulation has advantages over single-coil magnetic stimulation, such as more accurate targeting and larger stimulation range. In this paper, a 4 × 4 array multichannel magnetic stimulation system based on a submillimeter planar square spiral coil is proposed. The effects of multiple currents with different directions on the electromagnetic field strength and the focusing zone of the array-structured magnetic stimulation system are studied. The spatial distribution characteristics of the electromagnetic field are discussed. In addition, a method is proposed that can predict the spatial distributions of the electric and magnetic fields when currents in different directions are applied to the array-structured magnetic stimulation system. The study results show that in the section of z = 2 μm, the maximum and average magnetic field strengths of the array-structured magnetic stimulation system are 6.39 mT and 2.68 mT, respectively. The maximum and average electric field strengths are 614.7 mV/m and 122.82 mV/m, respectively, where 84.39% of the measured electric field values are greater than 73 mV/m. The average magnetic field strength of the focusing zone, i.e., the zone in between the two coils, is 3.38 mT with a mean square deviation of 0.18. Therefore, the array-structured multi-channel magnetic stimulation system based on a planar square spiral coil can have a small size of 412 μm × 412 μm × 1.7 μm, which helps improving the spatial distribution of electromagnetic field and increase the effectiveness of magnetic stimulation. The main contribution of this paper is a method for designing multichannel micro-magnetic stimulation devices.


1996 ◽  
Vol 74 (5-6) ◽  
pp. 282-289 ◽  
Author(s):  
V. P. Gusynin ◽  
I. A. Shovkovy

The derivative expansion of the one-loop effective Lagrangian in QED4 is considered. The first term in such an expansion is the famous Schwinger result for a constant electromagnetic field. In this paper we give an explicit expression for the next term containing two derivatives of the field strength Fμν. The results are presented for both fermion and scalar electrodynamics. Some possible applications of an inhomogeneous external field are pointed out.


2011 ◽  
Vol 697-698 ◽  
pp. 533-536 ◽  
Author(s):  
Zi Qiang Zhang ◽  
G.Y. Yu ◽  
S.B. Chen ◽  
Z.D. Zheng ◽  
R.D. Li ◽  
...  

Increasingly, induction heaters are being widely applied to the energy-saving light industrial equipment. But their electromagnetic radiation’s impact on the environment can’t be ignored. In the paper, several medium frequency induction heaters had been studied under different experimental conditions using E61 electromagnetic field strength analyzer, and as its supplement, the racetrack-coils induction heater had been simulated using ANSYS. According to ICNIRP guidelines, the results show that their radiation is generally in critical state, and magnetic field strength is superstandard in some areas. And countermeasures to the problems are advised.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. L29-L34 ◽  
Author(s):  
Zhen Jia ◽  
Shiguo Wu

We summarized and revised the present forward modeling methods for calculating the gravity- and magnetic-field components and their partial derivatives of a 2D homogeneous source with a polygonal cross section. The responses of interest include the gravity-field components and their first- and second-order partial derivatives and the magnetic-field components and their first-order partial derivatives. The revised formulas consist of several basic quantities that are common in all the formulations. A singularity appears when the observation point coincides with a polygon vertex. This singularity is removable for the gravity formulas but not for the others. The compact forms of the revised formulas make them easy to implement. We compare the gravity- and magnetic-field components and their partial derivatives produced by a 2D prism whose polygonal cross section approximates a cylinder with the corresponding analytical fields and partial derivatives of the cylinder. The perfect fittings presented by both data sets confirm the reliability of the updated formulas.


2018 ◽  
Author(s):  
Ivan A. Pensionerov ◽  
Elena S. Belenkaya ◽  
Stanley W. H. Cowley ◽  
Igor I. Alexeev ◽  
Vladimir V. Kalegaev ◽  
...  

Abstract. One of the main features of Jupiter's magnetosphere is its equatorial magnetodisc, which significantly increases the field strength and size of the magnetosphere. Juno measurements of the magnetic field during the perijove 1 pass have allowed us to determine optimal parameters of the magnetodisc using the paraboloid magnetospheric magnetic field model, which employs analytic expressions for the magnetospheric current systems. Specifically within the model we determine the size of the Jovian magnetodisc and the magnetic field strength at its outer edge.


2021 ◽  
Vol 40 (6) ◽  
pp. 1449-1472
Author(s):  
Seth Kermausuor

In this paper, we obtained a new Hermite-Hadamard type inequality for functions of two independent variables that are m-convex on the coordinates via some generalized Katugampola type fractional integrals. We also established a new identity involving the second order mixed partial derivatives of functions of two independent variables via the generalized Katugampola fractional integrals. Using the identity, we established some new Hermite-Hadamard type inequalities for functions whose second order mixed partial derivatives in absolute value at some powers are (α, m)-convex on the coordinates. Our results are extensions of some earlier results in the literature for functions of two variables.


Author(s):  
Mihaela-Ligia M. Unguresan ◽  
Delia Maria Gligor ◽  
Francisc Dulf ◽  
Tiberiu Colosi

The paper presents the dispersion of the concentration y(t, s) on the length (s) with respect to time (t), corresponding to the adsorption process of a phenothiazine derivative on graphite electrodes. The numerical simulation by equations with partial derivatives of the second order with two independent variables (t and s) (PDE II.2), based on (Mpdx) which associates with Taylor series was performed. Also, the adsorption process defined by PDE II.2 was included in a regulation scheme of concentration y(t, s) with multiple freedom levels. It insures good performances and a remarkable flexibility for extending the method in similar categories of applications.


In the majority of articles and texts requiring or explaining the applications of thermodynamics, numerous relations between partial derivatives are obtained or discussed without the adoption of a systematic method. No uniform procedure has been followed heretofore for finding quickly and easily the relation between any given derivative, and any permissible set of other derivatives chosen for reference. There is a very common practice of dealing with useful relations by the method of “presentation followed by verification,” which is most unsatisfactory. A few tables are available; in particular, the “Condensed Collection of Thermodynamical Formulas,” by P. W. Bridgman (Harvard Univ. Press) is useful and covers a large range; but in all current procedures the task of expressing a first or second partial derivative in terms of a set of others, remains in general most laborious. In the cases when the various derivatives of a chosen reference set had different pairs of independent variables, many transformations of possible interest have been neglected as altogether too complicated or too tedious for solution. If we desire to evaluate some partial derivative which cannot be obtained directly from experimental data, we should naturally choose other derivatives which have been found with the desired precision, and use them to calculate the former. Curiously, it appears that little advantage is taken of this possible procedure ; often we find that the better-known standard relations are used, when the included derivatives may not have been determined with as high a precision as some others.


Sign in / Sign up

Export Citation Format

Share Document